Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-09T00:55:41.819Z Has data issue: false hasContentIssue false

Long-term outcomes of repair in children with total anomalous pulmonary venous connection

Published online by Cambridge University Press:  27 May 2024

Zhangwei Wang
Affiliation:
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China Department of Cardiac Surgery, Beijing Children’s Hospital, Capital Medical University, National Children’s Medical Center, Beijing, China
Kai Ma
Affiliation:
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
Shoujun Li*
Affiliation:
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
*
Corresponding author: S. Li; Email: [email protected]

Abstract

Objectives:

The clinical data of patients with total anomalous pulmonary venous connection who underwent repair in our centre in the past 13 years were reviewed. In this study, we systemically reviewed our experience in the optimal surgical strategy for patients with total anomalous pulmonary venous connection, aiming to provide evidence for clinical decision-making.

Methods:

From January 1, 2009, to December 31, 2021, 122 patients undergoing surgical treatment for total anomalous pulmonary venous connection in our hospital were enrolled. Among them, 18 patients with single ventricle repair were excluded from the study. Multivariate analysis was used to determine the risk factors for early and late death and the risk factors for pulmonary vein obstruction.

Results:

There were 64 males and 40 females. The median age at surgery was 107 days (range, 25 days–788 days), the median weight at surgery was 4.8 kg (range, 3 kg–22 kg), and the median follow-up was 59 months (range, 0–150 months). Seven patients died early after surgery and six died late after discharge. Multivariable analysis indicated that prolonged cardiopulmonary bypass time was the only independent risk factor for early postoperative mortality. Multivariate analysis did not identify risk factors for late death. Emergency surgery, preoperative moderate and severe pulmonary hypertension, and prolonged cardiopulmonary bypass time were independent risk factors for postoperative pulmonary vein obstruction.

Conclusion:

Early and long-term late outcomes of repair in patients with total anomalous pulmonary venous connection have been encouraging. Postoperative pulmonary vein obstruction remains a major problem for specialists worldwide. Pulmonary vein obstruction should be considered in children with preoperative emergency surgery, moderate to severe pulmonary hypertension and prolonged cardiopulmonary bypass time, and regular follow-up is necessary.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bando, K, Turrentine, MW, Ensing, GJ, et al. Surgical management of total anomalous pulmonary venous connection. Thirty-year trends. Circulation 1996; 94: I12I16.Google ScholarPubMed
Lamb, RK, Qureshi, SA, Wilkinson, JL, et al. Total anomalous pulmonary venous drainage. Seventeen-year surgical experience. J Thorac Cardiovasc Surg 1988; 96: 368375.CrossRefGoogle ScholarPubMed
St. Louis, JD, Harvey, BA, Menk, JS, et al. Repair of “Simple” total anomalous pulmonary venous connection: a review from the pediatric cardiac care consortium. Ann Thorac Surg 2012; 94: 133138.CrossRefGoogle ScholarPubMed
Mao, J, Xu, Y, Liu, A, et al. Risk factors for postoperative pulmonary venous obstruction after correction of total anomalous pulmonary venous connection. Chin J Thorac Cardiovasc Surg 2021; 37: 669672.Google Scholar
Zhangke, GUO, Junli, DU, Xiaofeng, LI, et al. Efficacy and outcome of surgical treatment of 255 cases of total anomalous pulmonary venous connection: single center experience. Chin Circ J 2021; 36: 7479.Google Scholar
Zhiwei, Xu. Pediatric Cardiac Surgery. People’s Military Medical Press, Beijing, 2006, 581.Google Scholar
Mavroudis, C, Backer, C, Idriss, RF. Pediatric Cardiac Surgery. Blackwell Publishing Ltd, Oxford, 2012.CrossRefGoogle Scholar
Ou, Y, Nie, Z, Zhuang, J,. Early- and intermediate-term results of surgical correction in 328 patients with different drainage type of total anomalous pulmonary venous connection. Chin J Thorac Cardiovasc Surg 2017; 33: 1015.Google Scholar
Yong, MS, Yaftian, N, Griffiths, S, et al. Long-term outcomes of total anomalous pulmonary venous drainage repair in neonates and infants. Ann Thorac Surg 2018; 105: 12321238.CrossRefGoogle ScholarPubMed
Harada, T, Nakano, T, Oda, S, et al. Surgical results of total anomalous pulmonary venous connection repair in 256 patients. Interact Cardiovasc Thorac Surg 2019; 28: 421426.CrossRefGoogle ScholarPubMed
Jang, SI, Song, JY, Kim, SJ, et al. The recent surgical result of total anomalous pulmonary venous return. Korean Circ J 2010; 40: 3135.CrossRefGoogle ScholarPubMed
Seale, AN, Uemura, H, Webber, SA, et al. Total anomalous pulmonary venous connection morphology and outcome from an international population-base study. Circulation 2010; 122: 27182726.CrossRefGoogle Scholar
Shi, G, Zhu, Z, Chen, J, et al. Total anomalous pulmonary venous connection: the current management strategies in a pediatric cohort of 768 patients. Circulation 2017; 135: 4858.CrossRefGoogle Scholar
Jianfeng, HOU, Dianyuan, LI, Jiawei, QIU, et al. Risk factor analysis for peri-operative mortality in patients with total anomalous pulmonary venous connection. Chin Circ J 2017; 32: 669671.Google Scholar
Yu, P, Zhu, H, Jin, Z, et al. Clinical prognostic analysis of 135 patients after surgical correction of total anomalous pulmonary venous connection. Chin J ECC 2016; 14: 9599.Google Scholar
Ji, E, Liu, X, Liu, F, et al. Surgical repair for simple total anomalous pulmonary venous connection in neonates. Chin J Thorac Cardiovasc Surg 2021; 37: 449456.Google Scholar
Horer, J, Neuray, C, Vogt, M, et al. What to expect after repair of total anomalous pulmonary venous connection: data from 193 patients and 2902 patient years. Eur J Cardiothorac Surg 2013; 44: 800807.CrossRefGoogle ScholarPubMed
Karamlou, T, Gurofsky, R, Al Sukhni, E, et al. Factors associated with mortality and reoperation in 377 children with total anomalous pulmonary venous connection. Circulation 2007; 115: 15911598.CrossRefGoogle ScholarPubMed
Caldarone, CA, Najm, HK, Kadletz, M, et al. Relentless pulmonary vein stenosis after repair of total anomalous pulmonary venous drainage. Ann Thorac Surg 1998; 66: 15141519.CrossRefGoogle ScholarPubMed
Qin, Wu, Lei, Shi, Ni, Wei, et al. Follow-up and further intervention for postoperative pulmonary obstruction of total anomalous pulmonary venous connection. Chin J Thorac Cardiovasc Surg 2021; 37: 462466.Google Scholar