Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-25T11:31:26.393Z Has data issue: false hasContentIssue false

Evaluation of growth and feeding tolerance in infants with single-ventricle physiology receiving retrospective standard of care feeding regimens compared with protocolised formula or exclusive human milk feeding regimens

Published online by Cambridge University Press:  30 September 2024

Megan Horsley
Affiliation:
The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
Amiee Trauth
Affiliation:
The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
David S. Cooper
Affiliation:
The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
Cynthia Blanco
Affiliation:
Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio; Women’s and Children’s Hospital, San Antonio, TX, USA
Zhiqian Gao
Affiliation:
The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
Lindsey Justice*
Affiliation:
The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
*
Corresponding author: Lindsey Justice; Email: [email protected]

Abstract

Objective:

Determine whether weight gain velocity (g/day) 30 days after initiating feeds following cardiac surgery and other clinical outcomes improve in infants with single-ventricle physiology fed an exclusive human milk (EHM) diet with early fortification compared to non-protocolised “standard of care.”

Methods:

This retrospective cohort study compares term infants with single-ventricle physiology who underwent neonatal surgical palliation. The retrospective control group (RCG) was fed according to non-protocolised standard of care at a single centre and was compared with infants in a previous protocolised multi-site randomised controlled trial assigned to either an EHM group or a control group (TCG). The primary outcome measure is weight gain velocity. Secondary outcomes include change in weight z-score, and incidence of feeding intolerance and necrotising enterocolitis.

Results:

We evaluated 45 surgically palliated neonates with single-ventricle physiology compared to the prior trial patients (EHM = 55, TCG = 52). Baseline demographics were similar between groups, except the RCG had fewer patients with hypoplastic left heart syndrome (51% vs. 77% vs. 84%, p = 0.0009). The RCG grew similarly to the TCG (7.5 g/day vs. 8.2 g/day), and both groups had significantly lower growth than the EHM group (12 g/day). Necrotising enterocolitis/suspected necrotising enterocolitis were similar in the RCG versus TCG but significantly higher in the RCG compared to the EHM group (20.5% vs. 3.6%, p = 0.033). Incidences of other morbidities were similar.

Conclusions:

Neonates with single-ventricle physiology have improved short-term growth and decreased risk of necrotising enterocolitis or suspected necrotising enterocolitis when receiving an EHM diet after surgical palliation compared to non-protocolised feeding with bovine formula.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, JB, Iyer, SB, Schidlow, DN et al. Variation in growth of infants with single ventricle. J Pediatr 2012; 161:1621.CrossRefGoogle ScholarPubMed
Davis, D, Davis, S, Cotman, K et al. Feeding difficulties and growth delay in children with hypoplastic left heart syndrome versus d-transposition of the great arteries. Pediatr Cardiol 2008; 29: 328333.CrossRefGoogle ScholarPubMed
Kelleher, DK, Laussen, P, Teixeira-Pinto, A, Duggan, C. Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 norwood procedure. Nutrition 2006; 22: 237244.CrossRefGoogle ScholarPubMed
Vogt, KN, Manlhiot, C, Van Arsdell, G, Russell, JL, Mital, S, McCrindle, BW. Somatic growth in children with single ventricle physiology impact of physiologic state. J Am Coll Cardiol 2007; 50: 18761883.CrossRefGoogle ScholarPubMed
Williams, RV, Zak, V, Ravishankar, C et al. Factors affecting growth in infants with single ventricle physiology: a report from the pediatric heart network infant single ventricle trial. J Pediatr 2011; 159(6): 10171022. doi: 10.1016/j.jpeds.2011.05.05.CrossRefGoogle ScholarPubMed
Gingell, RL, Hornung, MG. Growth problems associated with congenital heart disease in infancy. In: Lebenthal, E (ed). Textbook of Gastroenterology and Nutrition in Infancy. Raven Press, New York, 1989: 639649.Google Scholar
Hansen, SR, Dorup, I. Energy and nutrient intakes in congenital heart disease. Acta Paediatr 1993; 82: 166172.CrossRefGoogle ScholarPubMed
Venna, A, Reid, K, Davis, S et al. Preoperative feeding in single ventricle neonates is predictive of shorter time to goal feed. Congenital Heart Dis, 2022; 17(5):505518. doi:10.32604/chd.2022.021571.CrossRefGoogle Scholar
Lisanti, AJ, Savoca, M, Gaynor, JW et al. Standardized feeding approach mitigates weight loss in infants with congenital heart disease. J Pediatr 2021; 231: 124130.CrossRefGoogle ScholarPubMed
Gongwer, RC, Gauvreau, K, Huh, SY, Sztam, KA, Jenkins, KJ. Impact of a standardized clinical assessment and management plan (SCAMP) on growth in infants with CHD. Cardiol Young 2018; 28: 10931098.CrossRefGoogle ScholarPubMed
Weston, C, Husain, SA, Curzon, CL et al. Improving outcomes for infants with single ventricle physiology through standardized feeding during the interstage. Nurs Res Pract 2016; 2016: 17. doi: 10.1155/2016/9505629.CrossRefGoogle ScholarPubMed
O’Neal Maynord, P, Johnson, M, Xu, M, Slaughter, JC, Killen, SAS. A multi-interventional nutrition program for newborns with congenital heart disease. J Pediatr 2020; 228: 6673.CrossRefGoogle ScholarPubMed
Newcombe, J, Fry-Bbowers, E. A post-operative feeding protocol to improve outcomes for neonates with critical congenital heart disease. J Pedic Nurs 2017; 35: 139143.CrossRefGoogle ScholarPubMed
Slicker, J, Hehir, DA, Horsley, M et al. Nutrition algorithms for infants with hypoplastic left heart syndrome; birth through the first interstage period. Congenit Heart Dis 2013; 8: 89102. doi: 10.1111/j.1747-0803.2012.00705.x.CrossRefGoogle ScholarPubMed
Salvatori, G, De Rose, DU, Massolo, AC et al. Current strategies to optimize nutrition and growth in newborns and infants with congenital heart disease: a narrative review. J Clin Med 2022; 11(7): 1841. doi: 10.3390/jcm11071841.CrossRefGoogle ScholarPubMed
Lambert, LM, Pike, NA, Medoff-Cooper, B et al. Variation in feeding practices following the norwood procedure. J Pediatr 2014; 164(2): 237242. doi: 10.1016/j.jpeds.2013.09.042.CrossRefGoogle ScholarPubMed
Slicker, J, Sables-Baus, S, Lambert, LM et al. Perioperative feeding approaches in single ventricle infants: a survey of 46 Centers. Congenit Heart Dis 2016; 11(6): 707715. doi: 10.1111/chd.12390.CrossRefGoogle ScholarPubMed
Hoch, JM, Fatusin, O, Yenokyan, G, Thompson, WR. Lefton-greif MA. Feeding methods for infants with single ventricle physiology are associated with length of stay during stage 2 surgery hospitalization. Congenital Heart Dis 2019; 14(3): 438445. doi: 10.1111/chd.12742.CrossRefGoogle ScholarPubMed
Sullivan, S, Schanler, RJ, Kim, JH et al. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr 2010; 156(4): 562567. doi: 10.1016/j.jpeds.2009.10.040.CrossRefGoogle ScholarPubMed
Davis, , Jessica, A, Spatz, , Diane, L,FAAN.Human milk and infants with congenital heart disease: a summary of current literature supporting the provision of human milk and breastfeeding. Adv Neonat Care 2019; 19(3): 212218. doi: 10.1097/ANC.0000000000000582.CrossRefGoogle Scholar
Elgersma, KM, Spatz, DL, Fulkerson, JA et al. Patterns of breastfeeding and human milk feeding in infants with single-ventricle congenital heart disease: a population study of the national pediatric cardiology quality improvement collaborative Registry. Breastfeed Med 2023; 18(4): 315325. doi: 10.1089/bfm.2023.0036.CrossRefGoogle ScholarPubMed
Blanco, CL, Hair, A, Justice, LB et al. A randomized trial of an exclusive human milk diet in neonates with single ventricle physiology. J Pediatr 2023; 256: 105112. doi: 10.1016/j.jpeds.2022.11.043.CrossRefGoogle ScholarPubMed
Fleig, L, Hagan, J, Lee, ML et al. Growth outcomes of small for gestational age preterm infants before and after implementation of an exclusive human milk-based diet. J Perinatol 2021; 41: 18591864. doi: 10.1038/s41372-021-01082.CrossRefGoogle ScholarPubMed
Cristofalo, EA, Schanler, RJ, Blanco, CL et al. Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. J Pediatr 2013; 163(6): 15921595. doi: 10.1016/j.jpeds.2013.07.011.CrossRefGoogle ScholarPubMed
Kumar, SR, Gaynor, JW, Jones, LA et al. The society of thoracic surgeons congenital heart surgery database: 2022 update on outcomes and research. Ann Thorac Surg 2023; 115(4): 807819.CrossRefGoogle Scholar