Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-06T09:23:01.881Z Has data issue: true hasContentIssue false

Defective lateralisation in children with congenitally malformed hearts

Published online by Cambridge University Press:  19 August 2008

Robert H. Anderson*
Affiliation:
Paediatrics, Royal Brompton Campus, National Heart and Lung Institute, Imperial College School of Medicine, London
Sandra Webb
Affiliation:
Anatomy and Developmental Biology, St George’s Hospital Medical School, London
Nigel A. Brown
Affiliation:
Anatomy and Developmental Biology, St George’s Hospital Medical School, London
*
Prof. Robert H. Anderson, Paediatrics, Royal Brompton Campus, NHLI @ ICSM, Dovehouse Street, London SW3 6LY, United Kingdom. Tel: (0)171 351 8750; Fax: (0)171 351 8230

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Continuing Medical Education
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Van Praagh, R, Van Praagh, S, Vlad, P, Keith, JD.Anatomic types of congenital dextrocardia. Diagnostic and embryologic implications. Am J Cardiol 1964;13:510531.CrossRefGoogle Scholar
2.Van Ptaagh, R, Ongley, PA, Swan, HJC.Anatomic types of single or common ventricle in man: morphologic and geometric aspects of sixty necropsied cases. Am J Cardiol 1964;13:367386.CrossRefGoogle Scholar
3.Wilkinson, JL, Acerete, F.Terminological pitfalls in congenital heart disease. Reappraisal of some confusing terms, with an account of a simplified system of basic nomenclature. Br Heart J 1973;35:11661177.CrossRefGoogle ScholarPubMed
4.Anderson, RH, Ho, SY.Continuing medical education. Sequential segmental analysis -description and categorization for the millenium. Cardiol Young 1997;7:98116.CrossRefGoogle Scholar
5.Yost, HJ.Inhibition of proteoglycan synthesis eliminates leftright asymmetry in Xenopus laevis cardiac looping. Development 1990; 110:865874.Google Scholar
6.Van Praagh, R, David, I, Wright, GB, Van Praagh, S.Large RV plus small LV is not single RV. Circulation 1980;61: 10571058.CrossRefGoogle Scholar
7.Lev, M.Pathologic diagnosis of positional variations in cardiac chambers in congenital heart disease. Lab Invest 1954;3:7182.Google ScholarPubMed
8.Baker-Cohen, KF.Visceral and vascular transposition in fishes, and a comparison with similar anomalies in man. Am J Anat 1961;109:3755.CrossRefGoogle Scholar
9.Van Mierop, LHS, Gessner, IH, Schiebler, GL. Asplenia and polysplenia syndrome. In: Bergsma, D. (ed). Birth Defects: Original Article Series, Volume VIII, No. 5. The Fourth Conference on the Clinical Delineation of Birth Defects. Part XV The Cardiovascular System. The National Foundation - March of Dimes. William & Wilkins Company, Baltimore. 1972;3644.Google Scholar
10.Anderson, C, Devine, WA, Anderson, RH, Debich, DE, Zuberbuhler, JR.Abnormalities of the spleen in relation to congenital malformations of the heart a survey of necropsy findings in children. Br Heart J 1990;63:122128.CrossRefGoogle Scholar
11.Putschar, WGJ, Manion, WC.Congenital absence of the spleen and associated anomalies. Am J Clin Pathol 1956;26:429470.CrossRefGoogle ScholarPubMed
12.Ivemark, BI. Implications of agenesis of the spleen on the pathogenesis of conotruncus anomalies in childhood. An analysis of the heart; malformations in the splenic agenesis syndrome, with 14 new cases. Acta Paediatr Scand [Suppl] 1955;44 Suppl. 104:1110.Google Scholar
13.Moller, JH, Nakib, A, Anderson, RC, Edwards, JE.Congenital cardiac disease associated with polysplenia: A developmental complex of bilateral “left-sidedness”. Circulation 1967;36:789799.CrossRefGoogle ScholarPubMed
14.Van Praagh, R. The segmental approach to diagnosis in congenital heart disease. In: Bergsma, D. (ed). Birth Defects: Original Article Series, Volume VIII, No. 5. The Fourth Conference on the Clinical Delineation of Birth Defects. Part XV The Cardiovascular System. The National Foundation - March of Dimes. Williams & Wilkins Company, 1972;423.Google Scholar
15.Van Praagh, R, Van Praagh, S.Atrial isomerism in the heterotaxy syndromes with asplenia, or polysplenia, or normally formed spleen: an erroneous concept. Am J Cardiol 1990;66:15041506.CrossRefGoogle ScholarPubMed
16.Layman, TE, Levine, MA, Amplatz, K, Edwards, JE.“Asplenic syndrome” in association with rudimentary spleen. Am J Cardiol 1967;20:136140.CrossRefGoogle ScholarPubMed
17.Soukias, ND, Shinebourne, EA, Carvalho, JS.Disparity between the arrangement of the abdominal vessels and the bronchial tree and atrial appendages in a patient with mirror-imaged venous return. Cardiol Young 1998;8:247249.CrossRefGoogle Scholar
18.de Jong, F, Vir gh, S, Moorman, AFM.Cardiac development: a morphologically integrated molecular approach. Cardiol Young 1997;7:131146.Google Scholar
19.Bellomo, D, Brown, NA. Morphological and cellular asymmetries in the embryonic mouse heart that precede looping. Submitted for publication.Google Scholar
20.Seo, J-W, Brown, NA, Ho, SY, Anderson, RH.Abnormal laterality and congenital cardiac anomalies. Relations of visceral and cardiac morphologies in the iv/iv mouse. Circulation 1992;86:642650.CrossRefGoogle ScholarPubMed
21.Morishima, M, Yasui, H, Nakazawa, M, Ando, M, Istubashi, M, Takao, A. Situs variation and cardiovascular anomalies in the transgenic mouse insertional mutant, inv Teratology 1998;57:302309.3.0.CO;2-Y>CrossRefGoogle Scholar
22.Yasui, H, Morishima, M, Nakazawa, M, Aikawa, E.Anomalous looping, atrioventricular cushion dysplasia, and unilateral ventricular hypoplasia in the mouse embryos with right isomerism induced by retinoic acid. Anat Rec 1998,250:210219.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
23.Seo, J.W, Brown, N.A., Ho, S.Y, and Anderson, R.H.Abnormal laterality and congenital cardiac anomalies. Relations of visceral and cardiac morphologies in the iv/iv mouse. Circulation 1992; 86: 642650.CrossRefGoogle ScholarPubMed
24.Brown, N.A. and Wolpert, L.The development of handedness in left/right asymmetry. Development 1990; 109: 19.CrossRefGoogle ScholarPubMed
25.Levin, M. and Mercola, M.The compulsion of chirality: Toward an understanding of left-right asymmetry. Genes & Development 1998; 12: 763769CrossRefGoogle ScholarPubMed
26.Harvey, R.RLinks in the Left/Right Axial Pathway. Cell 1998; 94: 273276.Google ScholarPubMed
27.Meno, C, Saijoh, Y, Fujii, H., Ikeda, M., Yokoyama, T, Yokoyama, M., Toyoda, Y, and Hamada, H.Left-right asymmetric expression of the TGFb-family member lefty in mouse embryos. Nature 1996; 381: 151155.CrossRefGoogle Scholar
28.Meno, C, Ito, Y, Saijoh, Y, Matsuda, Y, Tashiro, K., Kuhara, S., and Hamada, H.Two closely-related left-right asymmetrically expressed genes, lefty- 1 and lefty-2: their distinct expression, chromosomal linkage and direct neutalization. Genes To Cells 1997; 2: 513524.CrossRefGoogle Scholar
29.Collignon, J., Varlet, I., and Robertson, E.J.Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 1996; 381: 155158.CrossRefGoogle ScholarPubMed
30.Ryan, A.K., Blumberg, B., Rodriguez-Esteban, C, Yonei-Tamura, S., Tamura, K., Tsukui, T, de la Pena, J., Sabbagh, W, Greenwald, J., Choe, S., Norris, D.P, Robertson, E.J., Evans, R.M., and Rosenfeld, M.G., Izpisua-Belmonte JC. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 1998; 394: 545551CrossRefGoogle ScholarPubMed
31.Piedra, M.E., Icardo, J.M., Albajar, M., Rodriguez-Rey, J.C., and Ros, M.A.Pitx2 Participates in the Late Phase of the Pathway Controlling Left-Right Asymmetry. Cell 1998; 94: 319324CrossRefGoogle ScholarPubMed
32.Yoshioka, H., Meno, C, Koshiba, K., Sugihara, M., Itoh, H., Ishimaru, Y, Inoue, T, Ohuchi, H., Semina, E.V., Murray, J.C., Hamada, H., and Noji, S.Pitx2, a Bicoid-Type Homeobox Gene, Is Involved in a Lefty-Signaling Pathway in Determination of Left-Right Asymmetry. Cell 1998; 94: 299305.CrossRefGoogle Scholar
33.Logan, M., Pagan-Westphal, S.M., Smith, D.M., Paganessi, L., and Tabin, C.J.The Transcription Factor Pitx2 Mediates Situs Specific Morphogenesis in Response to Left-Right Asymmetric Signals. Cell 1998; 94: 307317.CrossRefGoogle ScholarPubMed
34.Supp, D.M., Witte, D.E, Potter, S.S., and Brueckner, M.Mutation of an axonemal dynein affects left-right asymmetry in inversus vucerum mice. Nature 1997; 389: 963966.CrossRefGoogle ScholarPubMed
35.Meno, C, Shimono, A., Saijoh, Y, Yashiro, K., Mochida, K., Ohishi, O., Noji, S., Kondoh, H., and Hamada, H.lefty-1 Is Required for Left-Right Determination as a Regulator of lefty- 2 and nodal. Cell 1998; 94: 287297.CrossRefGoogle ScholarPubMed
36.Oh, S.P and Li, E.The signalling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes & Development 1997; 11: 18121826.Google Scholar
37.Franco, D., Kelly, R., Lamers, WH, Buckingham, M., andMoorman, A.F.M.Regionalized transcriptional domains of myosin light chain 3f transgenes in the embryonic mouse heart: Morphogenetic implications. Developmental Biology 1997; 188: 1733.Google Scholar