Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T02:43:06.602Z Has data issue: false hasContentIssue false

Constrictive pericarditis: rare but reversible cause of protein losing enteropathy

Published online by Cambridge University Press:  02 February 2022

Nishant C. Shah*
Affiliation:
Division of Pediatric Cardiology, Cardiac Science, Sheikh Khalifa Medical City, Abu Dhabi, UAE
Laszlo Kiraly
Affiliation:
Division of Pediatric Cardiac Surgery, Cardiac Science, Sheikh Khalifa Medical City, Abu Dhabi, UAE Department of Public Health, Semmelweis University, Budapest, Hungary
Hazem El Badaoui
Affiliation:
Division of Pediatric Cardiology, Cardiac Science, Sheikh Khalifa Medical City, Abu Dhabi, UAE
*
Address for correspondence: N. C. Shah, Division of Pediatric Cardiology, Cardiac Science, Sheikh Khalifa Medical City, AL Karamah Street, Abu Dhabi, UAE. Tel: + 971 56 8314342. E-mail: [email protected]

Abstract

Constrictive pericarditis is uncommon in children. It results from scarring and consequent loss of the normal elasticity of the pericardial sac and is most commonly seen as a late sequelae of idiopathic or viral pericarditis. Here, we report a case of protein losing enteropathy as a complication of constrictive pericarditis in a 2-year-old child. Pericardial thickening was demonstrated by cardiac MRI and subsequent pericardiectomy led to remarkable improvement and resolution of protein losing enteropathy.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cameron, J, Oesterle, SN, Baldwin, JC, Hancock, EW. The etiologic spectrum of constrictive pericarditis. Am Heart J 1987; 113: 354360.CrossRefGoogle ScholarPubMed
Davidson, JD, Waldmann, TA, Goodman, DS, Gordon, RS. Protein-losing gastroenteropathy in congestive heart-failure. Lancet 1961; 1: 899902.CrossRefGoogle ScholarPubMed
Simcha, A, Taylor, JF. Constrictive pericarditis in childhood. Arch Dis Child 1971; 46: 515519.CrossRefGoogle ScholarPubMed
Kumpe, DA, Jaffe, RB, Waldmann, TA, Weinstein, MA. Constrictive pericarditis and protein losing enteropathy. An imitator of intestinal lymphangiectasis. Am J Roentgenol Radium Ther Nucl Med 1975; 124: 365373.CrossRefGoogle ScholarPubMed
Breen, JF. Imaging of the pericardium. J Thorac Imaging 2001; 16: 4754.CrossRefGoogle ScholarPubMed
Geske, JB, Anavekar, NS, Nishimura, RA, Oh, JK, Gersh, BJ. Differentiation of constriction and restriction: complex cardiovascular hemodynamics. J Am Coll Cardiol 2016; 68: 23292347.CrossRefGoogle ScholarPubMed
Vaitkus, PT, Kussmaul, WG. Constrictive pericarditis versus restrictive cardiomyopathy: a reappraisal and update of diagnostic criteria. Am Heart J 1991; 122: 14311441.CrossRefGoogle ScholarPubMed
Talreja, DR, Edwards, WD, Danielson, GK, et al. Constrictive pericarditis in 26 patients with histologically normal pericardial thickness. Circulation 2003; 108: 18521857.CrossRefGoogle ScholarPubMed