Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T12:13:47.158Z Has data issue: false hasContentIssue false

Biomarkers in paediatric heart failure: is there value?*

Published online by Cambridge University Press:  16 December 2015

Kimberly Y. Lin*
Affiliation:
Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
*
Correspondence to: K. Y. Lin, MD, Division of Cardiology, The Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia PA 19104, United States of America. E-mail: [email protected]

Abstract

A biomarker is any measurable, surrogate characteristic, which reflects either the presence or the absence of a disease state. This can be a blood test, an imaging characteristic, an exercise parameter, and even a genetic profile. Serum biomarkers are particularly attractive in that their cost to the patient is relatively low in terms of money, time, risk, and ease of obtaining a sample. The potential benefits of a good biomarker are manifold. This manuscript will review serum biomarkers of proposed utility in paediatric heart failure, especially with respect to their ability to aid clinical decision making, diagnosis, and prognosis.

Type
Original Articles
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Presented at the Children’s Hospital of Philadelphia Cardiology 2015: 18th Annual Update on Pediatric and Congenital Cardiovascular Disease: “Challenges and Dilemmas“, Scottsdale, Arizona, United States of America, Wednesday February 11, 2015 – Sunday, February 15, 2015.

References

1.Nawaytou, H, Bernstein, HS. Biomarkers in pediatric heart disease. Biomark Med 2014; 8: 943963.CrossRefGoogle ScholarPubMed
2.Yancy, CW, Jessup, M, Bozkurt, B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013; 128: e240e327.Google Scholar
3.Kirk, R, Dipchand, AI, Rosenthal, DN. The International Society for Heart and Lung Transplantation Guidelines for the management of pediatric heart failure. ISHLT Monograph Series Volume 8. University of Alabama Printing, Birmingham, 2014.Google Scholar
4.Maisel, AS, Krishnaswamy, P, Nowak, RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002; 347: 161167.CrossRefGoogle ScholarPubMed
5.Moe, GW, Howlett, J, Januzzi, JL, Zowall, H. N-terminal pro-B-type natriuretic peptide testing improves the management of patients with suspected acute heart failure: primary results of the Canadian prospective randomized multicenter IMPROVE-CHF study. Circulation 2007; 115: 31033110.CrossRefGoogle ScholarPubMed
6.Mueller, C, Scholer, A, Laule-Kilian, K, et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med 2004; 350: 647654.CrossRefGoogle ScholarPubMed
7.van Kimmenade, RR, Pinto, YM, Bayes-Genis, A, Lainchbury, JG, Richards, AM, Januzzi, JL Jr. Usefulness of intermediate amino-terminal pro-brain natriuretic peptide concentrations for diagnosis and prognosis of acute heart failure. Am J Cardiol 2006; 98: 386390.CrossRefGoogle ScholarPubMed
8.Davis, M, Espiner, E, Richards, G, et al. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet 1994; 343: 440444.CrossRefGoogle ScholarPubMed
9.Cohen, S, Springer, C, Avital, A, et al. Amino-terminal pro-brain-type natriuretic peptide: heart or lung disease in pediatric respiratory distress? Pediatrics 2005; 115: 13471350.CrossRefGoogle ScholarPubMed
10.Koulouri, S, Acherman, RJ, Wong, PC, Chan, LS, Lewis, AB. Utility of B-type natriuretic peptide in differentiating congestive heart failure from lung disease in pediatric patients with respiratory distress. Pediatr Cardiol 2004; 25: 341346.CrossRefGoogle ScholarPubMed
11.Fried, I, Bar-Oz, B, Algur, N, et al. Comparison of N-terminal pro-B-type natriuretic peptide levels in critically ill children with sepsis versus acute left ventricular dysfunction. Pediatrics 2006; 118: e1165e1168.CrossRefGoogle ScholarPubMed
12.Maher, KO, Reed, H, Cuadrado, A, et al. B-type natriuretic peptide in the emergency diagnosis of critical heart disease in children. Pediatrics 2008; 121: e1484e1488.CrossRefGoogle ScholarPubMed
13.Law, YM, Hoyer, AW, Reller, MD, Silberbach, M. Accuracy of plasma B-type natriuretic peptide to diagnose significant cardiovascular disease in children: the Better Not Pout Children! Study. J Am Coll Cardiol 2009; 54: 14671475.CrossRefGoogle ScholarPubMed
14.Law, YM, Ettedgui, J, Beerman, L, Maisel, A, Tofovic, S. Comparison of plasma B-type natriuretic peptide levels in single ventricle patients with systemic ventricle heart failure versus isolated cavopulmonary failure. Am J Cardiol 2006; 98: 520524.CrossRefGoogle ScholarPubMed
15.Huang, SC, Wu, ET, Ko, WJ, et al. Clinical implication of blood levels of B-type natriuretic peptide in pediatric patients on mechanical circulatory support. Ann Thorac Surg 2006; 81: 22672272.CrossRefGoogle ScholarPubMed
16.Lowenthal, A, Camacho, BV, Lowenthal, S, et al. Usefulness of B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide as biomarkers for heart failure in young children with single ventricle congenital heart disease. Am J Cardiol 2012; 109: 866872.CrossRefGoogle ScholarPubMed
17.Price, JF, Thomas, AK, Grenier, M, et al. B-type natriuretic peptide predicts adverse cardiovascular events in pediatric outpatients with chronic left ventricular systolic dysfunction. Circulation 2006; 114: 10631069.CrossRefGoogle ScholarPubMed
18.Auerbach, SR, Richmond, ME, Lamour, JM, et al. BNP levels predict outcome in pediatric heart failure patients: post hoc analysis of the pediatric carvedilol trial. Circ Heart Fail 2010; 3: 606611.CrossRefGoogle ScholarPubMed
19.Cantinotti, M, Law, Y, Vittorini, S, et al. The potential and limitations of plasma BNP measurement in the diagnosis, prognosis, and management of children with heart failure due to congenital cardiac disease: an update. Heart Fail Rev 2014; 19: 727742.CrossRefGoogle ScholarPubMed
20.Soongswang, J, Durongpisitkul, K, Nana, A, et al. Cardiac troponin T: a marker in the diagnosis of acute myocarditis in children. Pediatr Cardiol 2005; 26: 4549.CrossRefGoogle ScholarPubMed
21.Sachdeva, S, Song, X, Dham, N, Heath, DM, DeBiasi, RL. Analysis of clinical parameters and cardiac magnetic resonance imaging as predictors of outcome in pediatric myocarditis. Am J Cardiol 2015; 115: 499504.CrossRefGoogle ScholarPubMed
22.Ruffer, A, Munch, F, Potapov, S, et al. Troponin I levels in extracorporeal membrane oxygenation following congenital heart surgery. World J Pediatr Congenit Heart Surg 2014; 5: 229235.CrossRefGoogle ScholarPubMed
23.Latini, R, Masson, S, Anand, IS, et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 2007; 116: 12421249.CrossRefGoogle ScholarPubMed
24.Egstrup, M, Schou, M, Tuxen, CD, et al. Prediction of outcome by highly sensitive troponin T in outpatients with chronic systolic left ventricular heart failure. Am J Cardiol 2012; 110: 552557.CrossRefGoogle ScholarPubMed
25.Pascual-Figal, DA, Casas, T, Ordonez-Llanos, J, et al. Highly sensitive troponin T for risk stratification of acutely destabilized heart failure. Am Heart J 2012; 163: 10021010.CrossRefGoogle ScholarPubMed
26.Rifai, N, Gillette, MA, Carr, SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006; 24: 971983.CrossRefGoogle Scholar
27.Lipshultz, SE, Simbre, VC 2nd, Hart, S, et al. Frequency of elevations in markers of cardiomyocyte damage in otherwise healthy newborns. Am J Cardiol 2008; 102: 761766.CrossRefGoogle ScholarPubMed
28.Meeusen, JW, Johnson, JN, Gray, A, et al. Soluble ST2 and galectin-3 in pediatric patients without heart failure. Clin Biochem 2015; EPub ahead of print, available online August 12, 2015.CrossRefGoogle ScholarPubMed
29.Ky, B, French, B, Levy, WC, et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail 2012; 5: 183190.CrossRefGoogle ScholarPubMed
30.Richter, B, Koller, L, Hohensinner, PJ, et al. A multi-biomarker risk score improves prediction of long-term mortality in patients with advanced heart failure. Int J Cardiol 2013; 168: 12511257.CrossRefGoogle ScholarPubMed
31.Braunwald, E. Heart failure. JACC Heart Fail 2013; 1: 120.CrossRefGoogle ScholarPubMed