Article contents
Asymptomatic rhythm and conduction abnormalities in children with acute rheumatic fever: 24-hour electrocardiography study
Published online by Cambridge University Press: 28 June 2010
Abstract
Some rhythm and conduction abnormalities can occur in children with acute rheumatic fever. These abnormalities have been defined based on standard electrocardiography; however, the real prevalence of these abnormalities has not been investigated previously by the evaluation of long-term electrocardiographic recordings. In this study, we evaluated the asymptomatic rhythm and conduction abnormalities in children with acute rheumatic fever by evaluating the 24-hour electrocardiography. We evaluated the standard electrocardiography and the 24-hour electrocardiography of 64 children with acute rheumatic fever. On standard electrocardiography, the frequency of the first-degree atrioventricular block was found to be 21.9%. Electrocardiography at 24 hours detected three additional and separate patients with a long PR interval. Mobitz type I block and atypical Wenckebach periodicity were determined in one patient (1.56%) on 24-hour electrocardiography. While accelerated junctional rhythm was detected in three patients on standard electrocardiography, it was present in nine patients according to 24-hour electrocardiography. Premature contractions were present in 1.7% of standard electrocardiography, but in 29.7% of 24-hour electrocardiography. Absence of carditis was found to be related to the presence of accelerated junctional rhythm (p > 0.05), and the presence of carditis was found to be related to the presence of premature contractions (p = 0.000). In conclusion, our results suggest that in children with acute rheumatic fever, the prevalence of rhythm and conduction abnormalities may be much higher than determined on standard electrocardiography. Further studies are needed to clarify whether or not these abnormalities are specific to acute rheumatic fever.
Keywords
- Type
- Original Articles
- Information
- Copyright
- Copyright © Cambridge University Press 2010
References
- 15
- Cited by