No CrossRef data available.
Published online by Cambridge University Press: 06 May 2022
Based on probability theory, a methodology that allows diagnosing neonatal cardiac dynamics was previously developed; however, diagnostic applications of this method are required to validate it to the neonatal cardiac dynamics was conducted, allowing to differentiate normal from pathological dynamics. The hourly maximum and minimum heart rate values from 39 continuous and ambulatory electrocardiographic records with a minimum length of 21 hours were taken, from newborns between 0 and 10 days of life, 9 clinically within normality limits and 30 with cardiac pathologies. The probability of occurrence of heart rates in ranges of 5 beats/minute was calculated. The distributions of probability were analysed, and finally the diagnosis was determined by the physical-mathematical methodology. Then, a statistical validation of sensitivity, specificity, and diagnostic agreement was performed. Normal registries showed probability distributions with absent or minimal presence of heart rates of the ranges between 125 and 135 beats/minute, while the abnormal ones had values within these ranges, as well as absence or minimal presence of heart rates from 75 beats/minute to 85 beats/minute. The sensitivity and specificity were 100%, and the Kappa coefficient had a value of 1. Hereby, it is concluded that through an application of a physical–mathematical methodology of neonatal cardiac diagnosis, it is possible to differentiate normality from disease.