Hostname: page-component-6bf8c574d5-vmclg Total loading time: 0 Render date: 2025-02-20T06:57:59.079Z Has data issue: false hasContentIssue false

Alterations in the intestinal microbiome and immune dysregulation in infants with CHD undergoing cardiopulmonary bypass: a scoping review

Published online by Cambridge University Press:  14 February 2025

Andrew J. Prout*
Affiliation:
Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
Kathleen L. Meert
Affiliation:
Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
Mamdouh Al-Ahmadi
Affiliation:
Division of Pediatric Cardiovascular Surgery, Department of Surgery, Children’s Hospital of Michigan, Detroit, MI, USA
Robert P. Dickson
Affiliation:
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA
*
Corresponding author: Andrew Prout; Email: [email protected]

Abstract

Background:

Infants who require cardiopulmonary bypass for surgical repair of CHD are at high risk for secondary infections, which cause significant death and disability. The risk of secondary infection is increased by immune dysfunction. The intestinal microbiome calibrates immune function. Infants with CHD have substantial changes in their intestinal microbiome. We performed this scoping review to describe the current understanding of the relationship between the intestinal microbiome and immune function after pediatric cardiac surgery with cardiopulmonary bypass.

Methods:

We searched the PubMed, Cumulative Index to Nursing and Allied Health Literature, Cochrane, and Scopus databases with the assistance of a medical librarian. We included trials that analysed intestinal microbiome composition and immune function after cardiac surgery with cardiopulmonary bypass in infants.

Results:

We found two observational cohorts and two interventional trials describing composition of intestinal microbiome and some measures of immune function after heart surgery with cardiopulmonary bypass in infants. A total of 114 children were analysed. Three trials were exclusively in infants, and one was in older children and infants. All trials found a differential composition of the intestinal microbiome in infants with CHD compared to those without CHD, and one described a robust correlation between composition of the intestinal microbiome with cytokine profile and adverse outcomes.

Conclusions:

Despite robust preclinical data and data from other disease states, there is minimal data about the correlation between immune function and intestinal microbiome composition in infants with CHD after cardiopulmonary bypass.

Type
Review
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zimmerman, MS, Smith, AGC, Sable, CA et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Child Adolesc Health 2020; 4: 185200. DOI: 10.1016/S2352-4642(19)30402-X.CrossRefGoogle Scholar
MacDonald, NE, Hall, CB, Suffin, SC, Alexson, C, Harris, PJ, Manning, JA. Respiratory syncytial viral infection in infants with congenital heart disease. N Engl J Med 1982; 307: 397400. DOI: 10.1056/NEJM198208123070702.CrossRefGoogle ScholarPubMed
Wheeler, DS, Wong, HR. Sepsis in pediatric cardiac intensive care. Pediatr Crit Care Med 2016; 17: S266S271. DOI: 10.1097/PCC.0000000000000796.CrossRefGoogle ScholarPubMed
Kansy, A, Jacobs, JP, Pastuszko, Aet al. Major infection after pediatric cardiac surgery: external validation of risk estimation model. Ann Thorac Surg 2012; 94: 20912095. DOI: 10.1016/J.ATHORACSUR.2012.07.079.CrossRefGoogle ScholarPubMed
Pierpont, ME, Brueckner, M, Chung, WK et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the American heart association. Circulation 2018; 138: e653. DOI: 10.1161/CIR.0000000000000606.CrossRefGoogle ScholarPubMed
Parikh, S, Bharucha, B, Kandar, S, Kshirsagar, N. Polymorphonuclear leukocyte functions in children with cyanotic and acyanotic congenital heart disease. Indian Pediatr 1993; 30(7): 883890. PMID: 8132280.Google ScholarPubMed
Davey, BT, Elder, RW, Cloutier, MM et al. T-cell receptor excision circles in newborns with congenital heart disease. J Pediatr 2019; 213: 96102.e2. DOI: 10.1016/j.jpeds.2019.05.061.CrossRefGoogle ScholarPubMed
Mithal, LB, Arshad, M, Swigart, LR, Khanolkar, A, Ahmed, A, Coates, BM. Mechanisms and modulation of sepsis-induced immune dysfunction in children. Pediatr Res 2022; 91: 447453. DOI: 10.1038/s41390-021-01879-8. 2021.CrossRefGoogle ScholarPubMed
Hall, MW, Greathouse, KC, Thakkar, RK, Sribnick, EA, Muszynski, JA. Immunoparalysis in pediatric critical care. Pediatr Clin North Am 2017; 64: 10891102. DOI: 10.1016/j.pcl.2017.06.008.CrossRefGoogle ScholarPubMed
Bronicki, RA, Hall, M. Cardiopulmonary bypass-induced inflammatory response: pathophysiology and treatment. Pediatr Crit Care Me 2016; 17: S272S278. DOI: 10.1097/PCC.0000000000000759.CrossRefGoogle Scholar
Tárnok, A, Schneider, P. Pediatric cardiac surgery with cardiopulmonary bypass: pathways contributing to transient systemic immune suppression. Int Congr Ser 2001; 16: 2432. DOI: 10.1097/00024382-200116001-00006.Google ScholarPubMed
Cornell, TT, Sun, L, Hall, MW et al. Clinical implications and molecular mechanisms of immunoparalysis after cardiopulmonary bypass. J Thorac Cardiov Sur 2012; 143: 11601166.e1. DOI: 10.1016/j.jtcvs.2011.09.011.CrossRefGoogle ScholarPubMed
Thaiss, CA, Zmora, N, Levy, M, Elinav, E. The microbiome and innate immunity. Nature 2016; 535: 6574. DOI: 10.1038/nature18847.CrossRefGoogle ScholarPubMed
Bäckhed, F, Roswall, J, Peng, Y et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17: 690703. DOI: 10.1016/J.CHOM.2015.04.004/ATTACHMENT/0005E3F9-03B7-4248-B68B-645B0438EF3A/MMC8.XLSX.CrossRefGoogle ScholarPubMed
Ronan, V, Yeasin, R, Claud, EC. Childhood development and the microbiome: the intestinal microbiota in maintenance of health and development of disease during childhood development. Gastroenterology 2021; 160: 495506. DOI: 10.1053/J.GASTRO.2020.08.065.CrossRefGoogle ScholarPubMed
Kim, CH. Immune regulation by microbiome metabolites. Immunology 2018; 154: 220229. DOI: 10.1111/imm.12930. Published online.CrossRefGoogle ScholarPubMed
Zhang, H, Zhang, Z, Liao, Y, Zhang, W, Tang, D. The complex link and disease between the gut microbiome and the immune system in infants. Front Cell Infect Microbiol 2022; 12, ecollection. DOI: 10.3389/fcimb.2022.924119 Google ScholarPubMed
Kelly, CJ, Zheng, L, Campbell, EL et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015; 17: 662671. DOI: 10.1016/J.CHOM.2015.03.005.CrossRefGoogle ScholarPubMed
Nastasi, C, Candela, M, Bonefeld, CM et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep 2015; 5: 110. DOI: 10.1038/srep16148. 2015.CrossRefGoogle ScholarPubMed
Byndloss, MX, Olsan, EE, Rivera-Chávez, F et al. Microbiota-activated PPAR-γ-signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 2017; 357: 570575. DOI: 10.1126/SCIENCE.AAM9949.CrossRefGoogle ScholarPubMed
Constantinides, MG, Link, VM, Tamoutounour, S et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 2019; 366(6464) eaax6624. DOI: 10.1126/SCIENCE.AAX6624/SUPPL_FILE/AAX6624-CONSTANTINIDES-SM.PDF.CrossRefGoogle ScholarPubMed
An, D, Oh, SF, Olszak, T et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 2014; 156: 123133. DOI: 10.1016/J.CELL.2013.11.042.CrossRefGoogle ScholarPubMed
Ansaldo, E, Farley, TK, Belkaid, Y. Control of immunity by the microbiota. Annu Rev Immunol 2021; 39: 449479. DOI: 10.1146/ANNUREV-IMMUNOL-093019-112348/CITE/REFWORKS.CrossRefGoogle ScholarPubMed
Henrick, BM, Rodriguez, L, Lakshmikanth, T et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021; 184: 38843898.e11. DOI: 10.1016/J.CELL.2021.05.030/ATTACHMENT/A747AFA8-44D5-42F6-8B71-FB7BF9F9660D/MMC2.XLSX.CrossRefGoogle ScholarPubMed
Ansaldo, E, Farley, TK, Belkaid, Y. Control of immunity by the microbiota. Annu Rev Immunol 2021 Apr 26:39 449479 . DOI: 10.1146/annurev-immunol-093019. Published onlineCrossRefGoogle ScholarPubMed
Matson, V, Fessler, J, Bao, R et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018; 359: 104108. DOI: 10.1126/SCIENCE.AAO3290/SUPPL_FILE/TABLES_S1-6.ZIP. (1979CrossRefGoogle ScholarPubMed
Spencer, CN, McQuade, JL, Gopalakrishnan, V et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 2021; 374: 16321640. DOI: 10.1126/SCIENCE.AAZ7015. 1979CrossRefGoogle ScholarPubMed
Baruch, EN, Youngster, I, Ben-Betzalel, G et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021; 371: 602609. DOI: 10.1126/SCIENCE.ABB5920/SUPPL_FILE/ABB5920_TABLES9.CSV. (1979)CrossRefGoogle ScholarPubMed
Pai, N, Popov, J, Hill, L et al. Results of the first pilot randomized controlled trial of fecal microbiota transplant in pediatric ulcerative colitis: lessons, limitations, and future prospects. Gastroenterology 2021; 161: 388393.e3. DOI: 10.1053/j.gastro.2021.04.067.CrossRefGoogle ScholarPubMed
Bongers, KS, Chanderraj, R, Woods, RJ et al. The gut microbiome modulates body temperature both in sepsis and health. Am J Respir Crit Care Med 2023; 207: 10301041. DOI: 10.1164/rccm.202201-0161OC. Published online November 15CrossRefGoogle ScholarPubMed
Group TSI for the A and NZICSCT, Boschert, C, Broadfield, E et al. Effect of selective decontamination of the digestive tract on hospital mortality in critically ill patients receiving mechanical ventilation: a randomized clinical trial. JAMA 2022; 328: 19111921. DOI: 10.1001/JAMA.2022.17927.Google Scholar
Umenai, T, Shime, N, Asahara, T, Nomoto, K, Itoi, T. A pilot study of Bifidobacterium breve in neonates undergoing surgery for congenital heart disease. J Intensive Care 2014; 2: 18. DOI: 10.1186/2052-0492-2-36/TABLES/4.CrossRefGoogle ScholarPubMed
Dilli, D, Aydin, B, Zenciroglu, A, Özyazici, E, Beken, S, Okumus, N. Treatment outcomes of infants with cyanotic congenital heart disease treated with synbiotics. Pediatrics 2013; 132: e932e938. DOI: 10.1542/PEDS.2013-1262.CrossRefGoogle ScholarPubMed
Salomon, J, Ericsson, A, Price, A et al. Dysbiosis and intestinal barrier dysfunction in pediatric congenital heart disease is exacerbated following cardiopulmonary bypass. JACC Basic Transl Sci 2021; 6: 311327. DOI: 10.1016/j.jacbts.2020.12.012.CrossRefGoogle ScholarPubMed
Liu, X, Lu, S, Shao, Y, Zhang, D, Tu, J, Chen, J. Disorders of gut microbiota in children with tetralogy of fallot. Transl Pediatr 2022; 11: 385395. DOI: 10.21037/TP-22-33/COIF.CrossRefGoogle ScholarPubMed
Huang, Y, Lu, W, Zeng, M et al. Mapping the early life gut microbiome in neonates with critical congenital heart disease: multiomics insights and implications for host metabolic and immunological health. Microbiome 2022; 10: 245. DOI: 10.1186/S40168-022-01437-2.CrossRefGoogle ScholarPubMed
Simonato, M, Fochi, I, Vedovelli, L et al. Urinary metabolomics reveals kynurenine pathway perturbation in newborns with transposition of great arteries after surgical repair. Metabolomics 2019; 15: 112. DOI: 10.1007/S11306-019-1605-3/FIGURES/3.CrossRefGoogle ScholarPubMed
Vedovelli, L, Cogo, P, Cainelli, E et al. Pre-surgery urine metabolomics may predict late neurodevelopmental outcome in children with congenital heart disease. Heliyon. Published online 2019; 5: e02547. DOI: 10.1016/j.heliyon.2019.e02547. Published online 2017CrossRefGoogle ScholarPubMed
Davidson, JA, Pfeifer, Z, Frank, B et al. Metabolomic fingerprinting of infants undergoing cardiopulmonary bypass: changes in metabolic pathways and association with mortality and cardiac intensive care unit length of stay. J Am Heart Assoc 2018; 7(24) e010711. DOI: 10.1161/JAHA.118.010711 CrossRefGoogle ScholarPubMed
Pathan, N, Burmester, M, Adamovic, T et al. Intestinal injury and endotoxemia in children undergoing surgery for congenital heart disease. Am J Respir Crit Care Med 2011; 184: 12611269. DOI: 10.1164/RCCM.201104-0715OC.CrossRefGoogle ScholarPubMed
Tricco, AC, Lillie, E, Zarin, W et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018; 169: 467473. DOI: 10.7326/M18-0850/SUPPL_FILE/M18-0850_SUPPLEMENT.PDF.CrossRefGoogle ScholarPubMed
Ellis, CL, Bokulich, NA, Kalanetra, KM et al. Probiotic administration in congenital heart disease: a pilot study. J Perinatol 2013; 33: 691697. DOI: 10.1038/JP.2013.41.CrossRefGoogle ScholarPubMed
Zhang, QL, Chen, XH, Zhou, SJ, Lei, YQ, Chen, Q, Cao, H. Relationship between heart failure and intestinal inflammation in infants with congenital heart disease. BMC Microbiol 2024; 24(1) 98. DOI: 10.1186/S12866-024-03229-0 CrossRefGoogle ScholarPubMed
Toritsuka, D, Aoki, M, Higashida, A et al. Probiotics may alleviate intestinal damage induced by cardiopulmonary bypass in children. Eur J Cardiothorac Surg 2024; 65(4): ezae152. DOI: 10.1093/ejcts/ezae152.CrossRefGoogle ScholarPubMed
Li, Y, Wei, C, Xu, H et al. The immunoregulation of Th17 in Host against Intracellular Bacterial Infection. Mediators Inflamm 2018; 2018: 113. DOI: 10.1155/2018/6587296.Google ScholarPubMed
Ivanov, II, Atarashi, K, Manel, N et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485498. DOI: 10.1016/j.cell.2009.09.033.CrossRefGoogle ScholarPubMed
Ivanov, II, Frutos Rde, L, Manel, N et al. Specific microbiota direct the differentiation of IL-17-producing T-Helper cells in the Mucosa of the small intestine. Cell Host Microbe 2008; 4: 337349. DOI: 10.1016/J.CHOM.2008.09.009.CrossRefGoogle ScholarPubMed
Supplementary material: File

Prout et al. supplementary material

Prout et al. supplementary material
Download Prout et al. supplementary material(File)
File 13.7 KB