Published online by Cambridge University Press: 22 March 2006
The study was designed to investigate the value of assessing right ventricular volume by transoesophageal 3-dimensional echocardiographic techniques compared with the standard transoesophageal cross-sectional approach. Echocardiography was performed using a multiplane probe. The 3-dimensional data sets were reconstructed after electrocardiographic and respiratory gated scanning, calculating the 3-dimensional volumes by the method of multiple slices. Cross-sectional determination of volume was performed using a modified area-length method, and the biplane multiple slice method following Simpson's rule. We studied 15 patients, with ages ranging from 6 to19 years, and body surface areas from 1.1 to 1.67 square metres. It proved possible top determine volumes with both methods in all patients. As determined by 3-dimensional echo, volumes were greater, being 113.0 plus or minus 61.2 millilitres at end-systole, and 61.7 plus or minus 36 millilitres at end-diastole, than those calculated from cross-sectional images using Simpson's rule, which gave values of 92.5 plus or minus 52 millilitres, and 41.3 plus or minus 22 millilitres. Compared to the values obtained using the area-length method, at 116.9 plus or minus 61 millilitres, and 60.3 plus or minus 30 millilitres, there were only small differences at end-systole, with a bias of 1.4, and limits of agreement of 20.9 millilitres, as well as at end-diastole, when bias was minus 3.8, and limits of agreement 22.3 millilitres. Correlation was also good, with coefficients of 0.93, and 0.91, respectively. The mean difference between the volumes by 3-dimensional acquisition and the multiple slice method was larger, with higher limits of agreement, at end-diastole showing bias of 20.5, and limits of agreement of 30.1 millilitres, and for end-systole bias of 20.4, and limits of agreement of 32.2 millilitres. Our data confirm that cross-sectional echocardiographic assessment of right ventricular volumes in children with atrial septal defects is quick, and reasonably reliable in clinical practice when employing the area-length method.