Published online by Cambridge University Press: 29 December 2014
Pulmonary valve replacement in patients with congenital cardiac disease is now being performed with more liberal indications in light of the data that chronic pulmonary insufficiency is not a benign lesion. The beneficial effects of valve replacement with low operative mortality and morbidity support this approach. Many options exist for a pulmonary valve prosthesis, which underscores the fact that there is no ideal valve available. Our efforts are focussed around a synthetic valve that avoids the bio-degeneration of a bio-prosthesis and avoids the need for life-long coumadin. We developed a bicuspid (bileaflet) polytetrafluoroethylene valve design, which has now gone through three major revisions in >200 patients over 14 years. We began the experience utilising a polytetrafluoroethylene hand-sewn bicuspid valve in the right ventricular outflow tract, initially using 0.6 mm and more recently 0.1 mm polytetrafluoroethylene. The 0.1 mm thickness material functions well as a leaflet, maintaining a relatively thin and flexible nature. It does not calcify or initiate thromboses at least for the first several years. We identified issues with dehiscence of the leaflet from the right ventricular outflow tract muscle, especially in the larger, potentially expansive right ventricular outflow tracts, and this prompted our latest design change to place the valve within a polytetrafluoroethylene tube. This current version of the polytetrafluoroethylene valve conduit has excellent short-to-intermediate-term function. Further follow-up is necessary to determine late durability and life-long valve-related procedural risk for our patients.
Presented at the Johns Hopkins All Children’s Heart Institute, 14th Annual International Symposium on Congenital Heart Disease, Saint Petersburg, Florida, United States of America, 15–18 February, 2014.