Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T01:46:56.219Z Has data issue: false hasContentIssue false

Myopericarditis following COVID-19 vaccination in adolescent triplets

Published online by Cambridge University Press:  08 May 2023

Jessica W. Wong*
Affiliation:
Emergency Department, Perth Children’s Hospital, Perth, Australia
Erin Bock
Affiliation:
Emergency Department, Perth Children’s Hospital, Perth, Australia
Wooi Seng Kee
Affiliation:
Department of Cardiology, Children’s Cardiac Centre, Perth Children’s Hospital, Perth, Australia
Aleisha J. Anderson
Affiliation:
Department of Infectious Diseases, Perth Children’s Hospital, Perth, Australia
Darshan Kothari
Affiliation:
Department of Cardiology, Children’s Cardiac Centre, Perth Children’s Hospital, Perth, Australia
Adrian J. Tarca
Affiliation:
Department of Cardiology, Children’s Cardiac Centre, Perth Children’s Hospital, Perth, Australia
*
Corresponding author: Dr J. W. Wong, Emergency Department, Perth Children’s Hospital, 15 Hospital Avenue, Perth, Western Australia 6009, Australia. E-mail: [email protected]

Abstract

Multiple studies have reported myocarditis and pericarditis after the Pfizer-BioNTech coronavirus disease 2019 messenger ribonucleic acid vaccine. We describe male adolescent triplets who presented with myopericarditis within one week following vaccine administration.

Type
Brief Report
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Olson, SM, Newhams, MM, Halasa, NB, et al. Effectiveness of BNT162b2 vaccine against critical Covid-19 in adolescents. New Engl J Med 2022; 386: 713723. DOI: 10.1056/NEJMoa2117995.10.1056/NEJMoa2117995CrossRefGoogle ScholarPubMed
Walter, EB, Talaat, KR, Sabharwal, C, et al. Evaluation of the BNT162b2 Covid-19 vaccine in children 5 to 11 years of age. New Engl J Med 2022; 386: 3546. DOI: 10.1056/NEJMoa2116298.10.1056/NEJMoa2116298CrossRefGoogle ScholarPubMed
Bozkurt, B, Kamat, I, Hotez, PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation 2021; 144: 471484. DOI: 10.1161/CIRCULATIONAHA.121.056135.10.1161/CIRCULATIONAHA.121.056135CrossRefGoogle ScholarPubMed
COVID-19 Vaccine Weekly Safety Report 6 January 2022 [Internet]. Australian Government; c2022, [updated 2022; cited 2022 Feb 16]. Available from. https://www.tga.gov.au/periodic/covid-19-vaccine-weekly-safety-report-06-01-2022,Google Scholar
Oster, ME, Shay, DK, Su, JR, et al. Myocarditis Ccases Rreported Aafter mRNA-Bbased COVID-19 Vvaccination in the US Ffrom December 2020 to August 2021. JAMA 2022; 2021: 331340. DOI: 10.1001/jama.2021.24110.10.1001/jama.2021.24110CrossRefGoogle Scholar
Moosmann, J, Gentles, T, Occlewshaw, C, Mitchelson, B. COVID vaccine-associated myocarditis in adolescent siblings: does it run in the family? Nato Adv Sci Inst Se 2022; 10: 611. DOI: 10.3390/vaccines10040611.Google ScholarPubMed
Tejtel, SK, Munoz, FM, Al-Ammouri, I, et al. Myocarditis and pericarditis: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2022; 40: 14991511. DOI: 10.1016/j.vaccine.2021.11.074.10.1016/j.vaccine.2021.11.074CrossRefGoogle Scholar
Law, YM, Lal, AK, Chen, S, et al. Diagnosis and management in myocarditis in children. A scientific statement from the American heart association. Circulation 2021; 144(6): e123–e135. DOI: 10.1161/CIR.0000000000001001.10.1161/CIR.0000000000001001CrossRefGoogle ScholarPubMed
Su, JR, McNeil, MM, Welsh, KJ, et al. Myopericarditis after vaccination, vaccine adverse event reporting system (VAERS), 1990-2018. Vaccine 2021; 39: 839845. DOI: 10.1016/j.vaccine.2020.12.046.10.1016/j.vaccine.2020.12.046CrossRefGoogle ScholarPubMed
Segal, Y, Shoenfeld, Y. Vaccine-induced autoimmunity: the role of molecular mimicry an immune cross-reaction. Cell Mol Immunol 2018; 15: 586594. DOI: 10.1038/cmi.2017.151.10.1038/cmi.2017.151CrossRefGoogle Scholar
Root-Berstein, R, Fairweather, D. Unresolved issues in theories of autoimmune disease varying myocarditis as a framework. J Theor Biol 2015; 375: 101123. DOI: 10.1016/j.jtbi.2014.11.022.10.1016/j.jtbi.2014.11.022CrossRefGoogle Scholar
Patone, M, Mei, XW, Handunnetthi, L, Dixon, S, et al. Risk of myocarditis after sequential doses of COVID-19 vaccine and SARS-CoV-2 infection by age and sex. Circulation 2022; 146: 743754. DOI: 10.1161/CIRCULATIONAHA.122.059970.10.1161/CIRCULATIONAHA.122.059970CrossRefGoogle ScholarPubMed
Caforio, AL, Mahon, NJ, Tona, F, et al. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur J Heart Fail 2002; 4: 411417. DOI: 10.1016/s1388-9842(02)00010-7.10.1016/S1388-9842(02)00010-7CrossRefGoogle ScholarPubMed
Meder, B, Rühle, F, Weis, T, et al. A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur Heart J 2014; 35: 10691077. DOI: 10.1093/eurheartj/eht251.10.1093/eurheartj/eht251CrossRefGoogle ScholarPubMed
Campuzano, O, Fernández-Falgueras, A, Sarquella-Brugada, G, et al. A genetically vulnerable myocardium may predispose to myocarditis. J. Am. Coll. Cardiol 2015; 66: 29132914. DOI: 10.1016/j.jacc.2015.10.049.10.1016/j.jacc.2015.10.049CrossRefGoogle ScholarPubMed
Baggio, C, Gagno, G, Porcari, A, et al. Myocarditis: which role for genetics? Curr. Cardiol. Rep 2021; 23(6): 58. DOI: 10.1007/s11886-021-01492-5.Google Scholar