Published online by Cambridge University Press: 01 August 2008
The mitral valvar complex is difficult to visualise accurately in only two dimensions. Three-dimensional echocardiography gives new insight into the dynamic changes of intra-cardiac structures during the cardiac cycle. The aim of this study was to study the mitral annulus in systole and diastole in normal children using three-dimensional echocardiography, and to analyse the effect of regurgitation on annular function.
Three-dimensional echocardiographic datasets, acquired in 11 consecutive subjects with mitral regurgitation, and 20 normal subjects, were analysed offline using simultaneous multiplanar review.
The mitral valvar annular area decreased in diastole, and increased in systole, in both groups. The annulus in patients with mitral regurgitation is dilated compared to normal subjects, the systolic value for those with regurgitation having a mean of 6.79 plus or minus 2.55 centimetres2/metres2, and the diastolic value a mean of 5.01 plus or minus 1.78 centimetres2/metres2, as opposed to a systolic mean value of 5.28 centimetres2/metres2 plus or minus 1.68, p = 0.091, and diastolic mean value of 3.05 centimetres2/metres2 plus or minus 0.90, in normal subjects (p less than 0.0001). The proportional change in mitral valvar annular area from systole to diastole showed a trend towards being smaller in those with mitral regurgitation, although this did not reach significance (24.8% versus 41.13%, p equal to 0.249). Analysis of subgroups of patients with moderate or severe mitral regurgitation showed mitral excursion, expressed as percentage of left ventricular length, to be significantly less than in normal subjects, at 12.78 plus or minus 5.10% versus 15.84 plus or minus 4.23% (p equal to 0.012).
Mitral valvar annular area in children decreases in diastole, and increases in systole. In those with mitral regurgitation, the annulus is dilated and the dynamic annular function is depressed.