Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T04:23:55.620Z Has data issue: false hasContentIssue false

Cardiovascular adaptation to extrauterine life after intrauterine growth restriction

Published online by Cambridge University Press:  30 October 2017

Luciana Rodriguez-Guerineau*
Affiliation:
Pediatric Cardiology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain Pediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
Miriam Perez-Cruz
Affiliation:
Barcelona Center for Maternal Fetal and Neonatal Medicine Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
María D. Gomez Roig
Affiliation:
Barcelona Center for Maternal Fetal and Neonatal Medicine Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
Francisco J. Cambra
Affiliation:
Pediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
Juan Carretero
Affiliation:
Pediatric Cardiology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
Fredy Prada
Affiliation:
Pediatric Cardiology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
Olga Gómez
Affiliation:
Barcelona Center for Maternal Fetal and Neonatal Medicine Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
Fátima Crispi
Affiliation:
Barcelona Center for Maternal Fetal and Neonatal Medicine Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
Joaquim Bartrons
Affiliation:
Pediatric Cardiology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
*
Correspondence to: L. Rodriguez-Guerineau, MD, Pediatric Cardiology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Passeig Sant Joan de Déu 2, 08950 Esplugues de Llobregat, Barcelona, Spain. Tel: +34 932 53 21 00; Fax: +34 932 03 39 59; E-mail: [email protected]

Abstract

Introduction

The adaptive changes of the foetal heart in intrauterine growth restriction can persist postnatally. Data regarding its consequences for early circulatory adaptation to extrauterine life are scarce. The aim of this study was to assess cardiac morphometry and function in newborns with late-onset intrauterine growth restriction to test the hypothesis that intrauterine growth restriction causes cardiac shape and functional changes at birth.

Methods

A comprehensive echocardiographic study was performed in 25 neonates with intrauterine growth restriction and 25 adequate-for-gestational-age neonates.

Results

Compared with controls, neonates with intrauterine growth restriction had more globular ventricles, lower longitudinal tricuspid annular motion, and higher left stroke volume without differences in the heart rate. Neonates with intrauterine growth restriction also showed subclinical signs of diastolic dysfunction in the tissue Doppler imaging with lower values of early (e′) diastolic annular peak velocities in the septal annulus. Finally, the Tei index in the tricuspid annulus was higher in the intrauterine growth restriction group.

Conclusion

Neonates with history of intrauterine growth restriction showed cardiac remodelling and signs of systolic and diastolic dysfunction. Overall, there was a significant tendency to worse cardiac function results in the right heart. The adaptation to extrauterine life occurred with more globular hearts, higher stroke volumes but a similar heart rate compared to adequate-for-gestational-age neonates.

Type
Original Articles
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, Y, Fu, W, Liu, J. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions. J Matern Fetal Neonatal Med 2016; 29: 660668.CrossRefGoogle ScholarPubMed
2. Bozynski, ME, Hanafy, FH, Hernandez, RJ. Association of increased cardiothoracic ratio and intrauterine growth retardation. Am J Perinatol 1991; 8: 2830.Google Scholar
3. Makikallio, K, Vuolteenaho, O, Jouppila, P, Rasanen, J. Ultrasonographic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency. Circulation 2002; 105: 20582063.Google Scholar
4. Crispi, F, Hernandez-Andrade, E, Pelsers, MM, et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am J Obstet Gynecol 2008; 199: 254.e1-8.CrossRefGoogle ScholarPubMed
5. Comas, M, Crispi, F, Cruz-Martinez, R, Figueras, F, Gratacos, E. Tissue Doppler echocardiographic markers of cardiac dysfunction in small-for-gestational age fetuses. Am J Obstet Gynecol 2011; 205: 57.e1-6.Google Scholar
6. Crispi, F, Figueras, F, Cruz-Lemini, M, Bartrons, J, Bijnens, B, Gratacos, E. Cardiovascular programming in children born small for gestational age and relationship with prenatal signs of severity. Am J Obstet Gynecol 2012; 207: 121.e1-9.Google Scholar
7. Crispi, F, Bijnens, B, Figueras, F, et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 2010; 121: 24272436.Google Scholar
8. Barker, DJ, Osmond, C, Golding, J, Kuh, D, Wadsworth, M. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989; 298: 564567.Google Scholar
9. Kaijser, M, Bonamy, AK, Akre, O, et al. Perinatal risk factors for ischemic heart disease: disentangling the roles of birth weight and preterm birth. Circulation 2008; 117: 405410.Google Scholar
10. Leipälä, JA, Boldt, T, Turpeinen, U, Vuolteenaho, O, Fellman, V. Cardiac hypertrophy and altered hemodynamic adaptation in growth-restricted preterm infants. Pediatr Res 2003; 53: 989993.CrossRefGoogle ScholarPubMed
11. Fouzas, S, Karatza, AA, Davlouros, PA, et al. Neonatal cardiac dysfunction in intrauterine growth restriction. Pediatr Res 2014; 75: 651657.CrossRefGoogle ScholarPubMed
12. Sehgal, A, Doctor, T, Menahem, S. Cardiac function and arterial biophysical properties in small for gestational age infants: postnatal manifestations of fetal programming. J Pediatr 2013; 163: 12961300.Google Scholar
13. Robinson, HP, Sweet, EM, Adam, AH. The accuracy of radiological estimates of gestational age using fetal crown-rump length measurements by ultrasound as a basis for comparison. Br J Obstet Gynaecol 1979; 86: 525528.Google Scholar
14. Baschat, AA, Gembruch, U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet Gynecol 2003; 21: 124127.Google Scholar
15. Lopez, L, Colan, SD, Frommelt, PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010; 23: 465495.Google Scholar
16. Lowes, BD, Gill, EA, Abraham, WT, et al. Effects of carvedilol on left ventricular mass, chamber geometry, and mitral regurgitation in chronic heart failure. Am J Cardiol 1999; 83: 12011205.Google Scholar
17. Connolly, HM, Oh, JK. Echocardiography. In: Braunwald E, (ed.). Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Elsevier Saunders, Philadelphia, PA, 2012: 200269.Google Scholar
18. Cui, W, Roberson, DA, Chen, Z, Madronero, LF, Cuneo, BF. Systolic and diastolic time intervals measured from Doppler tissue imaging: normal values and Z-score tables, and effects of age, heart rate, and body surface area. J Am Soc Echocardiogr 2008; 21: 361370.Google Scholar
19. Turan, OM, Turan, S, Gungor, S, et al. Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol 2008; 32: 160167.Google Scholar
20. Veille, JC, Hanson, R, Sivakoff, M, Hoen, H, Ben-Ami, M. Fetal cardiac size in normal, intrauterine growth retarded, and diabetic pregnancies. Am J Perinatol 1993; 10: 275279.Google Scholar
21. Martinussen, M, Brubakk, AM, Vik, T, Yao, AC. Relationship between intrauterine growth retardation and early postnatal superior mesenteric artery blood flow velocity. Biol Neonate 1997; 71: 2230.CrossRefGoogle ScholarPubMed
22. Marciniak, A, Claus, P, Sutherland, GR, et al. Changes in systolic left ventricular function in isolated mitral regurgitation. A strain rate imaging study. Eur Heart J 2007; 28: 26272636.Google Scholar
23. Grangl, G, Pansy, J, Burmas, A, Koestenberger, M. Tricuspid annular plane systolic excursion is reduced in infants with pulmonary hypertension: value of tricuspid annular plane systolic excursion (TAPSE) to determine right ventricular function in various conditions of pediatric pulmonary hypertension. Echocardiography 2015; 32: 883884.Google Scholar
24. Cruz-Lemini, M, Crispi, F, Valenzuela-Alcaraz, B, et al. Value of annular M-mode displacement vs tissue Doppler velocities to assess cardiac function in intrauterine growth restriction. Ultrasound Obstet Gynecol 2013; 42: 175181.Google Scholar
25. Tei, C, Ling, LH, Hodge, DO, et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function – a study in normals and dilated cardiomyopathy. J Cardiol 1995; 26: 357366.Google Scholar
26. Tei, C, Nishimura, RA, Seward, JB, Tajik, AJ. Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr 1997; 10: 169178.Google Scholar
27. Eidem, BW, O’Leary, PW, Tei, C, Seward, JB. Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease. Am J Cardiol 2000; 86: 654658.Google Scholar