Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T10:22:20.607Z Has data issue: false hasContentIssue false

Assessment of bone mineral density in children with congenital cyanotic heart disease

Part of: Metabolic

Published online by Cambridge University Press:  26 April 2021

Ashraf A. Elsharkawy
Affiliation:
Department of Pediatrics, Mansoura University, Mansoura, Egypt
Amany K. El-Hawary
Affiliation:
Department of Pediatrics, Mansoura University, Mansoura, Egypt
Gehan A. Alsawah
Affiliation:
Department of Pediatrics, Mansoura University, Mansoura, Egypt
Hadil M. Aboelenin
Affiliation:
Department of Pediatrics, Mansoura University, Mansoura, Egypt
Mohammad H. Awad*
Affiliation:
Department of Pediatrics, Mansoura University, Mansoura, Egypt
*
Author for correspondence: Mohammad Hosny Awad, Department of Pediatrics, Mansoura University Children’s Hospital, Mansoura, Egypt. Tel: +201116966363, E-mail: [email protected]

Abstract

Background:

Cyanotic CHD is one of many disorders in paediatrics that influence the health of children in different clinical aspects. One of the fundamental aspects that may be affected is bone mineral density.

Objectives:

The aim of our study is to assess bone mineral density in children with congenital cyanotic heart disease of different anatomical diagnoses.

Design/Methods:

Cross-sectional, observational study included 39 patients (20 males) with congenital cyanotic heart disease of different anatomical diagnoses following with the cardiology clinic in Mansoura University children’s hospital. All patients were subjected to anthropometric measures, oxygen saturation assessment, and lumber bone mineral density using dual-energy X-ray absorptiometry.

Results:

Six patients (15.4%) out of the 39 included patients showed bone mineral density reduction, 13 patients (33.3%) showed bone mineral density with Z-score between −1 and −2, while 20 patients (51.3%) showed bone mineral density with Z-score more than −1.

Conclusion:

Low bone mineral density can be found in children with cyanotic CHD, making it important to consider bone mineral density assessment and early treatment if needed to avoid further complications.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Desai, K, Rabinowitz, EJ, Epstein, S Physiologic diagnosis of congenital heart disease in cyanotic neonates. Curr Opin Pediatr 2019; 31: 274283.CrossRefGoogle ScholarPubMed
Perloff, JK, Warnes, CA Challenges posed by adults with repaired congenital heart disease. Circulation [Internet] 2001; 103: 26372643. Available from: https://www.ahajournals.org/doi/10.1161/01.CIR.103.21.2637.CrossRefGoogle ScholarPubMed
Warnes, CA, Liberthson, R, Danielson, GK, et al. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol [Internet] 2001; 37: 11701175. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0735109701012724.CrossRefGoogle ScholarPubMed
Witzel, C, Sreeram, N, Coburger, S, Schickendantz, S, Brockmeier, K, Schoenau, E Outcome of muscle and bone development in congenital heart disease. Eur J Pediatr [Internet] 2006; 165: 168174. Available from: http://link.springer.com/10.1007/s00431-005-0030-y.CrossRefGoogle ScholarPubMed
Martínez-Quintana, E, Rodríguez-González, F, Nieto-Lago, V Subclinical hypothyroidism in grown-Up congenital heart disease patients. Pediatr Cardiol [Internet] 2013; 34: 912917. Available from: http://link.springer.com/10.1007/s00246-012-0571-6.CrossRefGoogle ScholarPubMed
Bachrach, LK, Sills, IN, Kaplowitz, PB, et al. Clinical report - Bone densitometry in children and adolescents. Pediatrics [Internet] 2011; 127: 189194. Available from: http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2010–2961.CrossRefGoogle ScholarPubMed
Singh, H, Parkash, A, Saini, M, Wahi, PL Bone changes in congenital cyanotic heart disease. Br Heart J 1972; 34: 412–417.CrossRefGoogle ScholarPubMed
Tchang, S, Tyrrell, MJ, Bharadwaj, B Skeletal change in cyanotic heart disease simulating Cooley’s anemia. Report of a case with regression of bony changes following palliative cardiac surgery. Can Assoc Radiol J 1973; 24: 274279.Google ScholarPubMed
Pineda, CJ, Guerra, J, Weisman, MH, Resnick, D, Martinez-Lavin, M The skeletal manifestations of clubbing: a study in patients with cyanotic congenital heart disease and hypertrophic osteoarthropathy. Semin Arthritis Rheum [Internet] 1985; 14: 263273. Available from: https://linkinghub.elsevier.com/retrieve/pii/0049017285900459.CrossRefGoogle ScholarPubMed
Lohitkul, S, Thongchaiprasit, K, Jaovisidha, S, Siriwongpairat, P Humeral head ossification center in congenital heart disease. J Med Assoc Thail 2001; 84: 635639.Google ScholarPubMed
Rego, C, Guerra, A, Guardiano, M, et al. Bony density in adolescents after surgical repair of tetralogy of Fallot: a comparative study with healthy adolescents. Cardiol Young [Internet] 2002; 12: 531536. Available from: https://www.cambridge.org/core/product/identifier/S1047951102000963/type/journal_article.CrossRefGoogle ScholarPubMed
Sarafoglou, K, Petryk, A, Mishra, PE, et al. Early characteristics of bone deficits in children with Fontan palliation. Cardiol Young [Internet] 2020; 30: 468475. Available from: https://www.cambridge.org/core/product/identifier/S1047951120000293/type/journal_article.CrossRefGoogle ScholarPubMed
Barnes, C, Newall, F, Ignjatovic, V, et al. Reduced bone density in children on long-term warfarin. Pediatr Res [Internet] 2005; 57: 578581. Available from: http://www.nature.com/doifinder/10.1203/01.PDR.0000155943.07244.04.CrossRefGoogle ScholarPubMed
El-Ziny, M, Al-Marsafawy, HM, El-Haggar, M, Chalaby N, ElSherify EO. Growth parameters and adiposity in Egyptian infants and children. Egypt J Community Med 2003; 21: 6375.Google Scholar
Bach, J A Quick Reference on Hypoxemia. Vet Clin N AM Small Anim Pract 2017; 47: 175179.CrossRefGoogle ScholarPubMed
Al-Tonbary, YA, El-Ziny, MA, Elsharkawy, AA, El-Hawary, AK, El-Ashry, R, Fouda, AE Bone mineral density in newly diagnosed children with neuroblastoma. Pediatr Blood Cancer [Internet] 2011; 56: 202205. Available from: http://doi.wiley.com/10.1002/pbc.22880.CrossRefGoogle ScholarPubMed
Bishop, N, Arundel, P, Clark, E, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric official positions. J Clin Densitom 2014; 17: 275280.CrossRefGoogle ScholarPubMed
Joakimsen, RM, Fønnebø, V, Magnus, JH, Tollan, A, Johanne Søgaard, A The Tromso study: body height, body mass index and fractures. Osteoporos Int 1998; 8: 436442.CrossRefGoogle ScholarPubMed
De Laet, C, Kanis, JA, Odén, A, Johanson, H, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 2005; 16: 13301338.CrossRefGoogle ScholarPubMed
Hariri, AF, Almatrafi, MN, Zamka, AB, et al. Relationship between Body Mass Index and T-Scores of Bone Mineral Density in the Hip and Spine Regions among Older Adults with Diabetes: A Retrospective Review. J Obes [Internet] 2019; 2019: 9827403. Available from: https://www.hindawi.com/journals/jobe/2019/9827403/.CrossRefGoogle ScholarPubMed
Komarov, FI, Bkarev, IN, Smolianitskiĭ, AI NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7–29, 2000: highlights of the conference. South Med J [Internet] 2001; 94: 569573. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00007611-200106000-00005.Google Scholar
Ma, D, Jones, G The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab 2003; 88: 14861491.CrossRefGoogle ScholarPubMed
Bendaly, EA, DiMeglio, LA, Fadel, WF, Hurwitz, RA Bone density in children with single ventricle physiology. Pediatr Cardiol [Internet]. 2015; 36: 779785. Available from: http://link.springer.com/10.1007/s00246-014-1083-3.CrossRefGoogle ScholarPubMed
Sandberg, C, Johansson, K, Christersson, C, Hlebowicz, J, Thilén, U, Johansson, B Low bone mineral density in adults with complex congenital heart disease. Int J Cardiol [Internet] 2020; 319: 62–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167527320334318.CrossRefGoogle ScholarPubMed
Avitabile, CM, Goldberg, DJ, Zemel, BS, et al. Deficits in bone density and structure in children and young adults following Fontan palliation. Bone [Internet] 2015; 77: 12–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S8756328215001258.CrossRefGoogle Scholar
D’Ambrosio, P, Tran, D, Verrall, CE, et al. Prevalence and risk factors for low bone density in adults with a Fontan circulation. Congenit Heart Dis [Internet] 2019; 14: 987995. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/chd.12836.CrossRefGoogle ScholarPubMed
Basu, M, Malhotra, AS, Pal, K, et al. Alterations in different indices of skeletal health after prolonged residency at high altitude. High Alt Med Biol 2014; 15: 170175.CrossRefGoogle ScholarPubMed
Terzi, R, Yılmaz, Z Bone mineral density and changes in bone metabolism in patients with obstructive sleep apnea syndrome. J Bone Miner Metab 2016; 34: 475481.CrossRefGoogle ScholarPubMed
Arnett, TR, Gibbons, DC, Utting, JC, et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol [Internet] 2003; 196: 28. Available from: http://doi.wiley.com/10.1002/jcp.10321.CrossRefGoogle ScholarPubMed
Knowles, HJ Hypoxia-induced fibroblast growth factor 11 stimulates osteoclast-mediated resorption of bone. Calcif Tissue Int 2017; 100: 382391.CrossRefGoogle Scholar
Hulley, PA, Bishop, T, Vernet, A, et al. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2. J Pathol 2017; 242: 322333.CrossRefGoogle Scholar