No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
The zeta function of a nonsingular pair of quadratic forms defined over a finite field, $k$, of arbitrary characteristic is calculated. A. Weil made this computation when char $k\,\ne \,2$. When the pair has even order, a relationship between the number of zeros of the pair and the number of places of degree one in an appropriate hyperelliptic function field is established.