No CrossRef data available.
Article contents
Universal Entire Functions That Define Order Isomorphisms of Countable Real Sets
Published online by Cambridge University Press: 10 April 2019
Abstract
In 1895, Cantor showed that between every two countable dense real sets, there is an order isomorphism. In fact, there is always such an order isomorphism that is the restriction of a universal entire function.
Keywords
MSC classification
Secondary:
30K20: Compositional universality
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2019
Footnotes
Research supported by NSERC (Canada) grant RGPIN-2016-04107.
References
Bagchi, B.,
Recurrence in topological dynamics and the Riemann hypothesis
. Acta Math. Hungar.
50(1987), no. 3–4, 227–240. https://doi.org/10.1007/BF01903937
Google Scholar
Barth, K. F. and Schneider, W. J.,
Entire functions mapping countable dense subsets of the reals onto each other monotonically
. J. London Math. Soc. (2)
2(1970), 620–626. https://doi.org/10.1112/jlms/2.Part_4.620
Google Scholar
Barth, K. F. and Schneider, W. J.,
Entire functions mapping arbitrary countable dense sets and their complements onto each other
. J. London Math. Soc. (2)
4(1971/72), 482–488. https://doi.org/10.1112/jlms/s2-4.3.482
Google Scholar
Bayart, F. and Matheron, E.,
Dynamics of linear operators
. Cambridge Univ. Press, Cambridge, 2009. https://doi.org/10.1017/CBO9780511581113
Google Scholar
Birkhoff, G. D.,
Démonstration d’un théorème élémentaire sur les fonctions entières
. C.R. Acad. Sci. Paris
189(1929), 473–475.Google Scholar
Burke, M. R.,
Simultaneous approximation and interpolation of increasing functions by increasing entire functions. (English summary)
J. Math. Anal. Appl.
350(2009), no. 2, 845–858. https://doi.org/10.1016/j.jmaa.2008.08.018
Google Scholar
Burke, M. R.,
Entire functions mapping uncountable dense sets of reals onto each other monotonically
. Trans. Amer. Math. Soc.
361(2009), no. 6, 2871–2911. https://doi.org/10.1090/S0002-9947-09-04924-1
Google Scholar
Burke, M. R., Generic approximation and interpolation by entire functions via restriction of the values of the derivatives. (2017). Summer Conference on Topology and Its Applications. 44. http://ecommons.udayton.edu/topology_conf/44
Google Scholar
Deutsch, F.,
Simultaneous interpolation and approximation in topological linear spaces
. SIAM J. Appl. Math.
14(1966), 1180–1190. https://doi.org/10.1137/0114095
Google Scholar
Franklin, P.,
Analytic transformations of everywhere dense point sets
. Trans. Amer. Math. Soc.
27(1925), no. 1, 91–100. https://doi.org/10.2307/1989166
Google Scholar
Grosse-Erdmann, K.-G. and Peris Manguillot, A.,
Linear chaos
. Springer, London, 2011. https://doi.org/10.1007/978-1-4471-2170-1
Google Scholar
Maurer, W. D.,
Conformal equivalence of countable dense sets
. Proc. Amer. Math. Soc.
18(1967), 269–270. https://doi.org/10.2307/2035276
Google Scholar
Morayne, M.,
Measure preserving analytic diffeomorphisms of countable dense sets in ℂ
n
and ℝ
n
. Colloq. Math.
52(1987), no. 1, 93–98. https://doi.org/10.4064/cm-52-1-93-98
Google Scholar
Pietroń, M.,
Measure-preserving countable dense homogeneity of the Hilbert cube
. Topology Appl.
160(2013), no. 2, 257–263. https://doi.org/10.1016/j.topol.2012.10.006
Google Scholar
Rosay, J.-P. and Rudin, W.,
Holomorphic maps from C
n
to C
n
. Trans. Amer. Math. Soc.
310(1988), no. 1, 47–86. https://doi.org/10.2307/2001110
Google Scholar
Stäckel, P.,
Ueber arithmetische Eigenschaften analytischer Funktionen
. Math. Ann.
46(1895), 513–520.Google Scholar
Voronin, S. M.,
A theorem on the “universality” of the Riemann zeta-function. (Russian)
Izv. Akad. Nauk SSSR Ser. Mat.
39(1975), no. 3, 475–486. 703.Google Scholar