Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:05:40.056Z Has data issue: false hasContentIssue false

Une caractérisation des corps satisfaisant le théorème de l'axe principal

Published online by Cambridge University Press:  20 November 2018

A. Movahhedi
Affiliation:
LACO (URA 1586 CNRS) Département de Mathématiques Faculté des Sciences 123, avenue Albert Thomas 87060 Limoges Cedex France
A. Salinier
Affiliation:
LACO (URA 1586 CNRS) Département de Mathématiques Faculté des Sciences 123, avenue Albert Thomas 87060 Limoges Cedex France
Rights & Permissions [Opens in a new window]

Résumé

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On caractérise les corps K satisfaisant le théorème de l’axe principal à l’aide de propriétés des formes trace des extensions finies de K. Grâce à la caract érisation de ces mêmes corps due à Waterhouse, on retrouve à partir de là, de façon élémentaire, un résultat de Becker selon lequel un pro-2-groupe qui se réalise comme groupe de Galois absolu d’un tel corps K est engendré par des involutions.

Abstract

Abstract

We characterize general fields K, satisfying the Principal Axis Theorem, by means of properties of trace forms of the finite extensions of K. From this and Waterhouse’s characterization of the same fields, we rediscover, in quite an elementary way, a result of Becker according to which a pro-2-group which occurs as the absolute Galois group of such a field K, is generated by involutions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

1. Becker, Eberhard, Euklidische Körper und euklidische Hüllen von Körpern, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II., J. Reine Angew. Math. 268/269 (1974), 4152.Google Scholar
2. Lam, Tsit Yuen, The Algebraic Theory of Quadratic Forms, Math. Lecture Note Ser., W. A. Benjamin, Inc., Reading, Massachusetts, 1973.Google Scholar
3. Waterhouse, William C., Self-adjoint operators and formally real fields, Duke Math. J. (2) 43 (1976), 237243.Google Scholar