Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T11:19:41.020Z Has data issue: false hasContentIssue false

Twisted Alexander Invariants Detect Trivial Links

Published online by Cambridge University Press:  20 November 2018

Stefan Friedl
Affiliation:
Fakultät für Mathematik, Universität Regensburg, Germany. e-mail: [email protected]
Stefano Vidussi
Affiliation:
Department of Mathematics, University of California, Riverside, CA 92521, USA. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It follows from earlier work of Silver and Williams and the authors that twisted Alexander polynomials detect the unknot and the Hopf link. We now show that twisted Alexander polynomials also detect the trefoil and the figure-8 knot, that twisted Alexander polynomials detect whether a link is split and that twisted Alexander modules detect trivial links. We use this result to provide algorithms for detecting whether a link is the unlink, whether it is split, and whether it is totally split.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[Ad96] Adams, C., Splitting versus unlinking. J. Knot Theory Ramifications 5(1996), no. 3, 295299. http://dx.doi.org/10.1142/S0218216596000205 Google Scholar
[AgO8] Agol, I., Criteria for virtual fibering. J. Topology 1(2008), 269284. http://dx.doi.org/10.1112/jtopol/jtn003 Google Scholar
[AFW15] Aschenbrenner, M., Friedl, S., and Wilton, H., 3-manifold groups. EMS Series of Lectures in Mathematics, European Mathematical Society, Zurich, 2015. http://dx.doi.org/10.4171/1 54 Google Scholar
[BS15] Batson, J. and Seed, C., A link splitting spectral sequence in Khovanov homology. Duke Math. J. 164(2015), no. 5, 801841. http://dx.doi.org/10.1215/00127094-2881374 Google Scholar
[BZ85] Burde, G. and Zieschang, H., Knots, de Gruyter Studies in Mathematics, 5, Walter de Gruyter & Co., Berlin, 1985. Google Scholar
[CFP13] Cha, J., Friedl, S., and Powell, M., Splitting numbers of links. Proc. Edinburgh Math. Soc, to appear. Google Scholar
[DFJ12] Dunfield, N., Friedl, S., and Jackson, N., Twisted Alexander polynomials of hyperbolic knots. Exp. Math. 21(2012), no. 4, 329352. http://dx.doi.org/10.1080/10586458.2012.669268 Google Scholar
[Frl4] Friedl, S., Twisted Reidemeister torsion, the Thurston norm and fibered manifolds. Geom. Dedicata 172(2014), 135145. http://dx.doi.org/10.1007/s10711-013-9911-9 Google Scholar
[FK06] Friedl, S. and Kim, T., The Thurston norm, fibered manifolds and twisted Alexander polynomials. Topology 45(2006), 929953. http://dx.doi.org/10.1016/j.top.2006.06.003 Google Scholar
[FV07] Friedl, S. and Vidussi, S., Nontrivial Alexander polynomials of knots and links. Bull. London Math. Soc. 39(2007), 614622. http://dx.doi.org/10.1112/blms/bdm048 Google Scholar
[FV10] Friedl, S. and Vidussi, S., A survey of twisted Alexander polynomials. In: The mathematics of knots: theory and application, Contrib. Math. Comput. Sci. Springer, Heidelberg, 2011, 4594. http://dx.doi.org/10.1007/978-3-642-15637-3_3 Google Scholar
[FV13] Friedl, S. and Vidussi, S., A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds. J. Eur. Math. Soc. 15(2013), no. 6, 21272041. http://dx.doi.org/10.4171/JEMS/412 Google Scholar
[FV15] Friedl, S. and Vidussi, S., The Thurston norm and twisted Alexander polynomials. J. Reine Angew. Math. 707(2015), 87102. http://dx.doi.org/10.1515/crelle-2013-0087 Google Scholar
[HaO5] Harvey, S. L., Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston norm. Topology 44(2005), 895945. http://dx.doi.org/10.1016/j.top.2005.03.001 Google Scholar
[He76] Hempel, J., 3-manifolds. Ann. of Math. Studies, 86, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1976. Google Scholar
[HN13] Hedden, M. and Y. Ni, Khovanov module and the detection of unlinks. Geom. Topol. 17(2013), 30273076. http://dx.doi.org/10.2140/gt.2013.17.3027 Google Scholar
[HiO2] Hillman, J., Algebraic invariants of links. Series on Knots and Everything, 32, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. http://dx.doi.org/10.1142/9789812776648 Google Scholar
[HS97] Hilton, P. J. and U. Stammbach, A course in homological algebra. Second éd., Graduate Texts in Mathematics, 4, Springer-Vrlag, New York, 1997. http://dx.doi.org/10.1007/978-1-4419-8566-8 Google Scholar
[KL99] Kirk, P. and Livingston, C., Twisted Alexander invariants, Reidemeister torsion and Casson-Gordon invariants. Topology 38(1999), no. 3, 635661. http://dx.doi.org/10.1016/S0040-9383(98)00039-1 Google Scholar
[Kol2] Koberda, T., Asymptotic linearity of the mapping class group and a homological version of the Nielsen-Thurston classification. Geom. Dedicata 156(2012), 1330. http://dx.doi.org/10.1007/s10711-011-9587-y Google Scholar
[LinOl] Lin, X. S., Representations of knot groups and twisted Alexander polynomials. Acta Math. Sin. (Engl. Ser.) 17(2001), no. 3, 361380. http://dx.doi.org/10.1007/s1011401001 22 Google Scholar
[Liul3] Liu, Y., Virtual cubulation of nonpositively curved graph manifolds. J. Topol. 6(2013), no. 4, 793822. http://dx.doi.org/1 0.1112/jtopol/jtt010 Google Scholar
[MOST07] Manolescu, C., Ozsvâth, P., Szabo, Z., and Thurston, D., On combinatorial link Floer homology. Geom. Topol. 11(2007), 23392412. http://dx.doi.org/10.2140/gt.2007.11.2339 Google Scholar
[OS08] Ozsvâth, P. and Szabo, Z., Link Floer homology and the Thurston norm. J. Amer. Math. Soc. 21(2008), no. 3, 671709. http://dx.doi.org/10.1090/S0894-0347-08-00586-9 Google Scholar
[PW12] Przytycki, P. and Wise, D., Mixed 3-manifolds are virtually special. arxiv:1205.6742Google Scholar
[PW14] Przytycki, P. and Wise, D., Graph manifolds with boundary are virtually special. J. Topol. 7(2014), 419435. http://dx.doi.org/10.1112/jtopol/jtt009 Google Scholar
[Shl2] Shimizu, A., The complete splitting number of a lassoed link. Topology Appl. 159(2012), no. 4, 959965. http://dx.doi.org/1 0.101 6/j.topol.2011.11.028 Google Scholar
[SW06] Silver, D. and Williams, S., Twisted Alexander polynomials detect the unknot. Alg. Geom. Topol. 6(2006), 18931907. http://dx.doi.org/10.2140/agt.2006.6.1893 Google Scholar
[Th86] Thurston, W P., A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc. 339(1986), 99130.Google Scholar
[TuOl] Turaev, V., Introduction to combinatorial torsions. Lectures in Mathematics ETH Zurich, Birkhâuser Verlag, Basel, 2001. Google Scholar
[Wa94] Wada, M., Twisted Alexander polynomial for finitely presentable groups. Topology 33(1994), 241256. http://dx.doi.org/10.1016/0040-9383(94)90013-2 Google Scholar
[WiO9] Wise, D. T., The structure of groups with a quasiconvex hierarchy. Electronic Res. Announc. Math. Sci. 16(2009), 4455. http://dx.doi.org/10.3934/era.2009.16.44 Google Scholar
[Wil2a] Wise, D. T., The structure of groups with a quasi-convex hierarchy. httpy/www.math.mcgil I. ca/wise/papers. htmlGoogle Scholar
[Wil2b] Wise, D. T., From riches to RAAGs: 3-manifolds, right-angled Artin groups, and cubical geometry. CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 2012.Google Scholar