No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let Top denote the category of topological spaces and continuous maps. In this paper we discuss families of function spaces indexed by the elements of a topological space T, and their relationship to the characterization of right adjoints Top/S → Top/T, where S is also a topological space. After reducing the problem to the case where S is a one-point space, we describe a class of right adjoints Top → Top/T, and then show that every right adjoint Top → Top/T is isomorphic to one of this form. We conclude by giving necessary and sufficient conditions for a left adjoint Top/T → Top to be isomorphic to one of the form − XTY, where Y is a space over T, and xT denotes the fiber product with the product topology.