No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
The C*-algebras associated with irrational rotations of the circle were classified up to strong Morita equivalence by M. A. Rieffel. As a corollary, he gave a complete classification of the C*-algebras arising from irrational or Kronecker flows on the 2-torus up to *-isomorphism. Here, we extend the result to the socalled Denjoy homeomorphisms. Specifically, we give a necessary and sufficient condition for the strong Morita equivalence of two C*-algebras arising from homeomorphisms of the circle without periodic points. As a corollary, we show that two C*-algebras arising from flows on the 2-torus obtained from such homeomorphisms by the “flow under constant function” construction are *-isomorphic if and only if the flows themselves are topologically conjugate.