No CrossRef data available.
Article contents
Star-Shapedness and K-Orbits in Complex Semisimple Lie Algebras
Published online by Cambridge University Press: 20 November 2018
Abstract
Given a complex semisimple Lie algebra $\mathfrak{g}=\mathfrak{k}+i\mathfrak{k}$ ($\mathfrak{t}$ is a compact real form of $\mathfrak{g}$), let $\text{ }\pi \text{ }\text{:}\mathfrak{g}\to \mathfrak{h}$ be the orthogonal projection (with respect to the Killing form) onto the Cartan subalgebra $\mathfrak{h}:=\mathfrak{t}\text{+}i\mathfrak{t}$, where $\mathfrak{t}$ is a maximal abelian subalgebra of $\mathfrak{k}$. Given $x\,\in \,\mathfrak{g}$, we consider $\text{ }\!\!\pi\!\!\text{ (Ad(}K\text{)}x)$, where $K$ is the analytic subgroup $G$ corresponding to $\mathfrak{k}$, and show that it is star-shaped. The result extends a result of Tsing. We also consider the generalized numerical range $f(\text{Ad(}K\text{)}x)$, where $f$ is a linear functional on $\mathfrak{g}$. We establish the star-shapedness of $f(\text{Ad(}K\text{)}x)$ for simple Lie algebras of type $B$.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2011