Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T11:25:10.975Z Has data issue: false hasContentIssue false

Sommes de Fonctions Additives Restreintes à une Class de Congruence

Published online by Cambridge University Press:  20 November 2018

Armel Mercier*
Affiliation:
Département de Mathématiques Université du Québec à Chicoutimi930 EstRue Jacques-Cartier Chicoutimi (Que.) Canada G7H 2B1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Une fonction arithmétique f est une fonction définie sur l'ensemble des entiers naturels et à valeurs dans ℂ. On dit qu'une telle fonction f est additive si f(mn)=f(m) + f(n) si(m, n) = l et par ailleurs qu'elle est multiplicative si f(mn)=f(m)f(n) si (m, n) = l. Les sommes de la forme Σn≤xf(n) ont été largement étudiées.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1979

References

1. Apostol, T. M., Introduction to analytic number theory, Springer Verlag, 1976.Google Scholar
2. Brinitzer, E., Eine asymptotishe former für summen über die reziproken werte additive funktionen, Acta arith., XXXII, 1977, 387-391.Google Scholar
3. Chandrasekharan, K., Introduction to analytic number theory, Springer Verlag, 1968.Google Scholar
4. De Koninck, J. M., On a class of arithmetical functions, Duke Math. J. (39), (1972), 807-818.Google Scholar
5. De Koninck, J. M. et Galambos, J., Sums of reciprocals of additive functions, Acta arith. XXV, (1974), 159-164.Google Scholar
6. De Koninck, J. M. et Mercier, A., Remarque sur un article de T. M. Apostol, Bull. Canad, de Math. Vol 20 (1), (1977), 77-88.Google Scholar
7. Duncan, R. L., On the factorization of integers, Proc. Amer. Math. Soc, 25, (1970), 191-192.Google Scholar
8. Hardy, G. H. et Wright, E. M., An introduction to the theory of numbers, fourth edition, Oxford University Press, London, 1968.Google Scholar
9. Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen, Zwerter Band, Teubner, Berlin 1909.Google Scholar
10. Landau, E., Remarks on the paper of Mr. Kluyver on page 305 of Vol VI: Series derived from the series Σ μ,(m)/m, Koningl. Akad. Wetensch. Amsterdam, Proc. Sect. Sci. 7 (1905) 66-67.Google Scholar
11. Renyi, A., Additive and multiplicative number theoretic functions, Lectures notes, University of Michigan, Ann Arbor, 1965.Google Scholar
12. Segal, S. L., On prime independent additive functions, Archiv der mathematik, Vol XVD (1966), 329-332.Google Scholar
13. Selberg, A., Note on a paper by L. G. Sathe, J. Indian Math. Soc, 18 (1954), 83-87.Google Scholar