Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T06:24:10.424Z Has data issue: false hasContentIssue false

Small Prime Solutions to Cubic Diophantine Equations II

Published online by Cambridge University Press:  20 November 2018

Zhixin Liu*
Affiliation:
Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P. R. China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ${{a}_{1}},\,.\,.\,.\,,\,{{a}_{9}}$ be non-zero integers and $n$ any integer. Suppose that ${{a}_{1}}\,+\,.\,.\,.\,+\,{{a}_{9}}\,\equiv \,n$$\left( \bmod \,2 \right)$ and $\left( {{a}_{i}},\,{{a}_{i}} \right)\,=\,1$ for $1\,\le \,i\,<\,j\le \,9$. In this paper we prove that

  • (i) if ${{a}_{j}}$ are not all of the same sign, then the cubic equation ${{a}_{1}}p_{1}^{3}\,+\,.\,.\,.\,+\,{{a}_{9}}p_{9}^{3}\,=\,n$ has prime solutions satisfying ${{p}_{j}}\,\ll \,{{\left| n \right|}^{{1}/{3}\;}}\,+\,\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{8+\varepsilon }}$;

  • (ii) if all ${{a}_{j}}$ are positive and $n\,\gg \,\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{25+\varepsilon }}$ , then ${{a}_{1}}p_{1}^{3}\,+\,.\,.\,.\,+\,{{a}_{j}}p_{9}^{3}\,=\,n$ is soluble in primes $Pj$.

These results improve our previous results with the bounds $\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{14+\varepsilon }}$ and $\max \,{{\left\{ \left| {{a}_{j}} \right| \right\}}^{43+\varepsilon }}$ in place of $\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{8+\varepsilon }}$ and $\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{25+\varepsilon }}$ above, respectively.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Choi, K. K. and Kumchev, A. V., Mean values of Dirichlet polynomials and applications to linear equations with prime variables. Acta Arith.123(2006), no. 2,125-142. http://dx.doi.org/10.4064/aa123-2-2 Google Scholar
[2] Harman, G. and Kumchev, A. V., On sums of squares of primes. Math.Proc. Cambridge Philos. Soc. 140(2006), no. 1, 113. http://dx.doi.org/10.1 01 7/S030500410500881 9 Google Scholar
[3] Hua, L. K., Some results in the additive prime number theory, Quart. J. Math. (Oxford), 9 (1938), 6880.Google Scholar
[4] Liu, Z. X., Small prime solutions to cubic Diophantine equations. Canad.Math. Bull. 56(2013), no. 4, 785794.Google Scholar
[5] Ren, X. M., On exponential sums over primes and application in Waring-Goldbach problem. Sci. China Ser. A 48(2005), no. 6, 785797. http://dx.doi.org/1 0.136O/O3ysO341 Google Scholar
[6] Zhao, L. L., On the Waring-Goldbach problem for fourth and sixth powers. Proc. London Math. Soc. 108(2014), no. 5, 15931622. http://dx.doi.org/10.! 112/plms/pdtO72 Google Scholar