No CrossRef data available.
Article contents
Shifted moments of quadratic Dirichlet L-functions
Published online by Cambridge University Press: 24 March 2025
Abstract
We establish sharp upper bounds for shifted moments of quadratic Dirichlet L-function under the generalized Riemann hypothesis. Our result is then used to prove bounds for moments of quadratic Dirichlet character sums.
MSC classification
- Type
- Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society
Footnotes
P. G. is supported in part by NSFC grant 12471003 and L. Z. by the FRG Grant PS71536 at the University of New South Wales.
References
Armon, M. V.,
Averages of real character sums
. J. Number Theory 77(1999), no. 2, 209–226.Google Scholar
Chandee, V.,
On the correlation of shifted values of the Riemann zeta function
. Q. J. Math. 62(2011), no. 3, 545–572.Google Scholar
Conrey, J. B., Farmer, D. W., Keating, J. P., Rubinstein, M. O., and Snaith, N. C.,
Integral moments of
$L$
-functions
. Proc. London Math. Soc. (3) 91(2005), no. 1, 33–104.Google Scholar

Curran, M. J., Correlations of the Riemann zeta function. Mathematika 70(2024), no. 4, Paper No. e12268, 14 pp.Google Scholar
Gao, P. and Zhao, L.,
Bounds for moments of quadratic Dirichlet character sums
. Bull. Aust. Math. Soc. 111(2025), no. 1, 43–47.Google Scholar
Harper, A. J., Sharp conditional bounds for moments of the Riemann zeta function. Preprint, arXiv:1305.4618.Google Scholar
Heath-Brown, D. R.,
The average rank of elliptic curves
. Duke Math. J. 122(2004), no. 3, 225–320.Google Scholar
Iwaniec, H. and Kowalski, E., Analytic number theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004.Google Scholar
Jutila, M.,
On sums of real characters
. Trudy Mat. Inst. Steklov. 132(1973), 247–250.Google Scholar
Keating, J. P. and Snaith, N. C.,
Random matrix theory and
$L$
-functions at
$s=1/2$
. Commun. Math. Phys. 214(2000), no. 1, 91–110.Google Scholar


Koukoulopoulos, D.,
Pretentious multiplicative functions and the prime number theorem for arithmetic progressions
. Compos. Math. 149(2013), no. 7, 1129–1149.Google Scholar
Montgomery, H. L. and Vaughan, R. C.,
Mean values of character sums
. Can. J. Math. 31(1979), no. 3, 476–487.Google Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative number theory I: Classical theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, Cambridge, 2007.Google Scholar
Munsch, M.,
Shifted moments of
$L$
-functions and moments of theta functions
. Mathematika 63(2017), no. 1, 196–212.Google Scholar

Ng, N., Shen, Q., and Wong, P.-J.,
Shifted moments of the Riemann zeta function
. Can. J. Math. 76(2024), no. 5, 1556–1586.Google Scholar
Shen, Q.,
The fourth moment of quadratic Dirichlet
$L$
-functions
. Math. Z. 298(2021), nos. 1–2, 713–745.Google Scholar

Sono, K.,
Upper bounds for the moments of derivatives of Dirichlet
$L$
-functions
. Cent. Eur. J. Math. 12(2014) no. 6, 848–860.Google Scholar

Sono, K.,
Moments of the products of quadratic twists of automorphic
$L$
-functions
. Manuscripta Math. 150(2016), nos. 3–4, 547–569.Google Scholar

Soundararajan, K.,
Nonvanishing of quadratic Dirichlet
$L$
-functions at
$s=\frac{1}{2}$
. Ann. Math. (2) 152(2000), no. 2, 447–488.Google Scholar


Soundararajan, K.,
Moments of the Riemann zeta function
. Ann. Math. (2) 170(2009), no. 2, 981–993.Google Scholar
Soundararajan, K. and Young, M. P.,
The second moment of quadratic twists of modular
$L$
-functions
. J. Eur. Math. Soc. (JEMS) 12(2010), no. 5, 1097–1116.Google Scholar

Szabó, B.,
High moments of theta functions and character sums
. Mathematika 70(2024), no. 2, Paper No. e12242. 37 pp.Google Scholar
Virtanen, H.,
The mean fourth power of real character sums
. Acta Arith. 103(2002), no. 3, 249–257.Google Scholar