Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T06:38:33.873Z Has data issue: false hasContentIssue false

A Sequence of Results on Class Number Congruences

Published online by Cambridge University Press:  20 November 2018

Antone Costa*
Affiliation:
Department of Mathematics The American University 4400 Massachusetts Avenue NW Washington D.C 20016 U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let p ≡ 1 mod 8 be a rational prime and let h(—p) be the class number of . In [1], Barrucand and Cohn show that h(-p) = 0 mod 8 iff p = x2 + 32y2 for some x,y € Z. In this article, we generalize their result to a family of relative quadratic extensions K/F, where Fk is the maximum totally real subfield of Q(ζ2k+2 ), and a power of a prime of Fk from a family of positive density.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1993

References

1. Barrucand, R, Cohn, H. Primes of type x2 + 32y2, class numbers and residuacity, J. Reine Angew. Math 238(1969)6770.Google Scholar
2. Conner, R E., Hurrelbrink, J., Class Number Parity, World Scientific Publ., (1988).Google Scholar
3. Gras, G., Relations congruentielles entre nombres de classes de corps quadratiques, Acta Arith. 52(1989), 147162.Google Scholar
4. Pioui, R., Mesures de Haarp-adiques et interprétation arithmétique de quadratique), Thèse, Université de Franche-Comté, Besançon, (1990).Google Scholar
5. Redei, L., Ein neues zahlentheoretisch.es Symbol mit Anwendungen auf die Théorie der quadratischen Zahlkorper, J. Reine Angew. Math. 180(1939), 143.Google Scholar
6. Stevenhagen, P., Class groups and governing fields, Thesis, University of California at Berkeley, 1988. 7.Google Scholar
7. Williams, K. S., On the class number of modulo \6,forp ≡ 1 modSaprime, Acta Arith 39(1981), 381398.Google Scholar