Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T19:37:18.621Z Has data issue: false hasContentIssue false

Separating Maps between Spaces of Vector-Valued Absolutely Continuous Functions

Published online by Cambridge University Press:  20 November 2018

Luis Dubarbie*
Affiliation:
Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, Santander, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give a description of separating or disjointness preserving linear bijections on spaces of vector-valued absolutely continuous functions defined on compact subsets of the real line. We obtain that they are continuous and biseparating in the finite-dimensional case. The infinite-dimensional case is also studied.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Abramovich, Y. A. and Kitover, A. K., Inverses of disjointness preserving operators. Mem. Amer. Math. Soc. 143(2000), no. 679.Google Scholar
[2] Araujo, J., Separating maps and linear isometries between some spaces of continuous functions. J. Math. Anal. Appl. 226(1998), no. 1, 2339. doi:10.1006/jmaa.1998.6031Google Scholar
[3] Araujo, J., Realcompactness and spaces of vector-valued functions. Fund. Math. 172(2002), no. 1, 2740. doi:10.4064/fm172-1-3Google Scholar
[4] Araujo, J., Realcompactness and Banach-Stone theorems. Bull. Belg. Math. Soc. Simon Stevin 11(2004), no. 2, 247258.Google Scholar
[5] Araujo, J. and Jarosz, K., Automatic continuity of biseparating maps. Studia Math. 155(2003), no. 3, 231239. doi:10.4064/sm155-3-3Google Scholar
[6] Engelking, R., General Topology. Heldermann Verlag, Berlín, 1989.Google Scholar
[7] Font, J. J., Automatic continuity of certain isomorphisms between regular Banach function algebras. Glasgow Math. J. 39(1997), no. 3, 333343. doi:10.1017/S0017089500032250Google Scholar
[8] Font, J. J. and Hernández, S., On separating maps between locally compact spaces. Arch. Math. (Basel) 63(1994), no. 2, 158165.Google Scholar
[9] Font, J. J. and Hernández, S., Automatic continuity and representation of certain linear isomorphisms between group algebras. Indag. Math. 6(1995), no. 4, 397409. doi:10.1016/0019-3577(96)81755-1Google Scholar
[10] Gau, H. L., Jeang, J. S., and Wong, N. C., Biseparating linear maps between continuous vector-valued function spaces. J. Aust. Math. Soc. 74(2003), no. 1, 101109. doi:10.1017/S1446788700003153Google Scholar
[11] Hernández, S., Beckenstein, E., and Narici, L., Banach-Stone theorems and separating maps. Manuscripta Math. 86(1995), no. 4, 409416. doi:10.1007/BF02568002Google Scholar
[12] Hewitt, E. and Stromberg, K., Real and Abstract Analysis. Graduate Texts in Mathematics 25. Springer-Verlag, New York, 1975.Google Scholar
[13] Jarosz, K., Automatic continuity of separating linear isomorphisms. Canad. Math. Bull. 33(1990), no. 2, 139144.Google Scholar
[14] Jeang, J. S. and Wong, N. C., Weighted composition operators of C 0(X)’s. J. Math. Anal. Appl. 201(1996), no. 3, 981993. doi:10.1006/jmaa.1996.0296Google Scholar
[15] Larsen, R., Functional Analysis. An Introduction. Pure and Applied Mathematics 15. Marcel Dekker, New York, 1973.Google Scholar
[16] Pathak, V. D., Linear isometries of spaces of absolutely continuous functions. Canad. J. Math. 34(1982), no. 2, 298306.Google Scholar