Published online by Cambridge University Press: 20 November 2018
The Seifert-fiber-space conjecture for nonorientable 3-manifolds states that if M denotes a compact, irreducible, nonorientable 3-manifold that is not a fake P2 x S1, if π1M is infinite and does not contain Z2 * Z2 as a subgroup, and if π1M does however contain a nontrivial, cyclic, normal subgroup, then M is a Seifert bundle. In this paper, we construct all compact, irreducible, nonorientable 3-manifolds (that do not contain a fake P2 × I) each of whose fundamental group contains Z2 * Z2 and an infinité cyclic, normal subgroup; none of these manifolds admits a Seifert fibration, but they satisfy Thurston's Geometrization Conjecture. We then reformulate the statement of the (nonorientable) SFS-conjecture and obtain a torus theorem for nonorientable manifolds.