Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T03:27:02.622Z Has data issue: false hasContentIssue false

Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic Schr ödinger Operators

Published online by Cambridge University Press:  20 November 2018

Dachun Yang
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, P. R. China. e-mail: [email protected]
Sibei Yang
Affiliation:
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $A\,:=\,-\,\left( \nabla \,-\,i\overrightarrow{a} \right)\,.\,\left( \nabla \,-\,i\overrightarrow{a} \right)\,+\,V$ be a magnetic Schrödinger operator on ${{\mathbb{R}}^{n}}$, where

$$\vec{a}:=\left( {{a}_{1}},...,{{a}_{n}} \right)\in L_{\text{loc}}^{2}\left( {{\mathbb{R}}^{n}},{{\mathbb{R}}^{n}} \right)\operatorname{and}0\le V\in L_{\text{loc}}^{1}\left( {{\mathbb{R}}^{n}} \right)$$

satisfy some reverse Hölder conditions. Let $\phi :\,{{\mathbb{R}}^{n}}\,\times \,[0,\,\infty )\,\to \,[0,\,\infty )$ be such that $\phi \left( x,\,. \right)$ for any given $x\,\in \,{{\mathbb{R}}^{n}}$ is an Orlicz function, $\phi \left( ^{.}\,,\,t \right)\,\in \,{{\mathbb{A}}_{\infty }}\left( {{\mathbb{R}}^{n}} \right)$ for all $t\,\in \,\left( 0,\,\infty \right)$ (the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index $I\left( \phi \right)\,\in \,(0,\,1]$. In this article, the authors prove that second-order Riesz transforms $V{{A}^{-1}}$ and ${{\left( \nabla \,-\,i\overrightarrow{a} \right)}^{2}}{{A}^{-1}}$ are bounded from the Musielak–Orlicz–Hardy space ${{H}_{\phi ,\,A}}\left( {{\mathbb{R}}^{n}} \right)$, associated with $A$, to theMusielak–Orlicz space ${{L}^{\phi }}\left( {{\mathbb{R}}^{n}} \right)$. Moreover, we establish the boundedness of $V{{A}^{-1}}$ on ${{H}_{\phi ,\,A}}\left( {{\mathbb{R}}^{n}} \right)$. As applications, some maximal inequalities associated with $A$ in the scale of ${{H}_{\phi ,\,A}}\left( {{\mathbb{R}}^{n}} \right)$ are obtained.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[1] Ben Ali, B., Maximal inequalities and Riesz transform estimates on L? spaces for magnetic Schrodinger operators I. J. Funct. Anal. 259 (2010), no. 7,16311672. http://dx.doi.Org/10.1016/j.jfa.2009.09.003Google Scholar
[2] Ben Ali, B., Maximal inequalities and Riesz transform estimates on L? spaces for magnetic Schrodinger operators II. Math. Z. 274 (2013), no. 12, 85116. http://dx.doi.org/10.1007/s00209–012-1059-z Google Scholar
[3] Bui, T. A., Cao, J., Ky, L. D., Yang, D., and Yang, S., Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Spaces 1 (2013), 69129.Google Scholar
[4] Bui, T. A. and J. Li, Orlicz-Hardy spaces associated to operators satisfying bounded HMfunctional calculus and Davies-Gaffney estimates. J. Math. Anal. Appl. 373 (2011), no. 2, 485501. http://dx.doi.Org/10.1016/j.jmaa.2O10.07.050 Google Scholar
[5] Cao, J., Chang, D.-C., Yang, D., and Yang, S., Boundedness of second order Riesz transforms associated to Schrodinger operators on Musielak-Orlicz-Hardy spaces. Commun. Pure Appl. Anal. 13 (2014), no. 4, 14351463. http://dx.doi.org/10.3934/cpaa.2014.13.1435 Google Scholar
[6] Cao, J., Chang, D.-C., Yang, D., and Yang, S., Estimates for second order Riesz transforms associated with magnetic Schrodinger operators on Musielak-Orlicz-Hardy spaces. Appl. Anal. 93 (2014), no. 11, 25192545. http://dx.doi.org/10.1080/00036811.2014.918607 Google Scholar
[7] Cruz-Uribe, D. and Neugebauer, C. J., The structure of the reverse Holder classes. Trans. Amer. Math. Soc. 347 (1995), 29412960.Google Scholar
[8] Duong, X. T. and Li, J., Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J. Funct. Anal. 264 (2013), 14091437. http://dx.doi.Org/10.1016/j.jfa.2013.01.006 Google Scholar
[9] Duong, X. T., Xiao, J., and Yan, L., Old and new Morrey spaces with heat kernel bounds. J. Fourier Anal. Appl. 13 (2007), 87111. http://dx.doi.org/10.1007/s00041-006-6057-2 Google Scholar
[10] Duong, X. T. and Yan, L., Commutators of Riesz transforms of magnetic Schrodinger operators. ManuscriptaMath. 127 (2008), 219234. http://dx.doi.org/10.1007/s00229–008-0202-y Google Scholar
[11] Fefferman, C. and Stein, E. M., Hp spaces of several variables. Acta Math. 129 (1972), 137193. http://dx.doi.org/10.1007/BF02392215 Google Scholar
[12] Gehring, F., The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130 (1973), 265277. http://dx.doi.org/10.1007/BF02392268 Google Scholar
[13] Grafakos, L., Modern Fourier analysis. Second éd., Graduate Texts in Mathematics. 250, Springer, New York, 2009.Google Scholar
[14] Hou, S., Yang, D., and Yang, S., Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun. Contemp. Math. 15 (2013), no. 6, 1350029. http://dx.doi.Org/10.1142/S0219199713500296 Google Scholar
[15] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., and Yan, L., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Amer. Math. Soc. 214 (2011), no. 1007.Google Scholar
[16] Jiang, R. and Yang, D., New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258 (2010), 11671224. http://dx.doi.Org/10.1016/j.jfa.2009.10.018 Google Scholar
[17] Jiang, R. and Yang, D., Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun. Contemp. Math. 13 (2011), 331373. http://dx.doi.Org/10.1142/S0219199711004221 Google Scholar
[18] Jiang, R., Yang, Da., and Yang, Do., Maximal function characterizations of Hardy spaces associated with magnetic Schrodinger operators. Forum Math. 24 (2012), 471494.Google Scholar
[19] Johnson, R. and Neugebauer, C. J., Homeomorphismspreserving Ap. Rev. Mat. Iberoam. 3 (1987), 249273. http://dx.doi.org/10.4171/RMI/50 Google Scholar
[20] Kurata, K., An estimate on the heat kernel of magnetic Schrodinger operators and uniformly elliptic operators with non-negative potentials. J. London Math. Soc. (2) 62 (2000), 885903. http://dx.doi.Org/10.1112/S002461070000137X Google Scholar
[21] Kurata, K. and Sugano, S., Estimates of the fundamental solution for magnetic Schrodinger operators and their applications. Tohoku Math. J. (2) 52 (2000), 367382. http://dx.doi.Org/10.2748/tmj/1178207819 Google Scholar
[22] Ky, L. D., Bilinear decompositions and commutators of singular integral operators. Trans. Amer. Math. Soc. 365 (2013), 29312958.Google Scholar
[23] Ky, L. D., New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory 78 (2014), 115150.Google Scholar
[24] Musielak, J., Orlicz spaces and modular spaces. Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983.Google Scholar
[25] Rao, M. M. and Ren, Z. D., Theory of Orlicz spaces. Marcel Dekker, Inc., New York, 1991.Google Scholar
[26] Shen, Z., Estimates in L? for magnetic Schrodinger operators. Indiana Univ. Math. J. 45 (1996), 817841.Google Scholar
[27] Shen, Z., Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrodinger operators with magnetic fields. Trans. Amer. Math. Soc. 348 (1996), 44654488. http://dx.doi.org/10.1090/S0002–9947-96-01709-6 Google Scholar
[28] Shen, Z., LP estimates for Schrodinger operators with certain potential. Ann. Inst. Fourier (Grenoble) 45 (1995), 513546. http://dx.doi.org/10.5802/aif.1463 Google Scholar
[29] Strômberg, J.-O. and Torchinsky, A., Weighted Hardy spaces. Lecture Notes in Mathematics, 1381, Springer-Verlag, Berlin, 1989.Google Scholar
[30] Yang, Da. and Yang, Do., Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrodinger operators. Front. Math. China (to appear).Google Scholar
[31] Yang, D. and Yang, S., Musielak-Orlicz Hardy spaces associated with operators and their applications. J. Geom. Anal. 24 (2014), 495570. http://dx.doi.org/!0.1007/s12220-012-9344-y Google Scholar