Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T06:36:30.517Z Has data issue: false hasContentIssue false

Retracts and Injectives

Published online by Cambridge University Press:  20 November 2018

Shalom Feigelstock
Affiliation:
Bar-Ilan UniversityRamat-Gan, Israel
Aaron Klein
Affiliation:
Bar-Ilan UniversityRamat-Gan, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Embedding theorems are employed to show that many important categories do not possess non-trivial retracts or injectives. E.g., the categories of monoids, groups, rings, rings with unity, polynomial identity rings, nilpotent groups, solvable groups, and several varieties of groups.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1982

References

1. Baer, R., Absolute retracts in group theory, Bull. AMS 52 (1946), 510-506.Google Scholar
2. Baumslag, G., Wreath products and p-groups, Proc. Camb. Phil. Soc. 55 (1959), 224-231.Google Scholar
3. Berman, G. and Silverman, R. J., Simplicity of near-rings of transformations, Proc. AMS 10 (1959), 456-459.Google Scholar
4. Bokut, L. A., Some embedding theorems for rings and semigroups, Sibirsk Mat. Z. 4 (1963), 500-518.Google Scholar
5. Boone, W. W. and Higman, G., An algebraic characterization of groups with soluble word problem, J. Australian Math. Soc. 18 (1974), 41-53.Google Scholar
6. Cohn, P. M., Simple rings without zero-divisors and Lie division rings, Mathematika 6 (1959), 4-18.Google Scholar
7. Higman, G., Neumann, B. H. and Neumann, H., Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247-254.Google Scholar
8. Klein, A., Relations, in categories, Illinois J. Math. 14 (1970), 536-550.Google Scholar
9. Klein, A., Injectives and simple objects, J. Pure and App. Alg. 15 (1979), 243-245.Google Scholar
10. Malone, J. J., A near-ring analogue of a ring embedding theorem, J. Alg. 16 (1970), 237-238.Google Scholar
11. Meldrum, J. D. P., Injective near-ring of modules over Zn , Proc. AMS 68 (1978), 16-18.Google Scholar
12. Neumann, B. H., Adjunction of elements to groups, J. London Math. Soc. 18 (1943), 4-11.Google Scholar
13. Neumann, B. H. and Neumann, H., Embedding theorems for groups, J. London Math. Soc. 34 (1959), 465-479.Google Scholar
14. Raphael, R., Injective rings, Comm. in Alg. 1 (1974), 403-414.Google Scholar