Article contents
The Relationship Between ϵ-Kronecker Sets and Sidon Sets
Published online by Cambridge University Press: 20 November 2018
Abstract
A subset $E$ of a discrete abelian group is called $\varepsilon$-Kronecker if all $E$-functions of modulus one can be approximated to within ϵ by characters. $E$ is called a Sidon set if all bounded $E$-functions can be interpolated by the Fourier transform of measures on the dual group. As $\varepsilon$-Kronecker sets with $\varepsilon \,<\,2$ possess the same arithmetic properties as Sidon sets, it is natural to ask if they are Sidon. We use the Pisier net characterization of Sidonicity to prove this is true.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2016
References
- 1
- Cited by