No CrossRef data available.
Article contents
Rectangularity Versus Piecewise Rectangularity of Product Spaces
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We shall discuss relations between rectangularity and piecewise rectangularity of product spaces. In particular, we show that for each positive integer n there exists an n-dimensional, collectionwise normal, non-piecewise rectangular product X × Y which satisfies the inequality dim (X × Y) ≤ dim X + dim Y.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 01
References
2.
Chiba, T. and Chiba, K., Q-paracompactness and closed mappings, Sci. Rep. Tokyo Kyoiku Daigaku
11 (1972), 231–234.Google Scholar
4.
Chiba, K., Two remarks on the normality of product spaces, Rep. Fac. Sci. Shizuoka Univ. 11 (1976), 17–22.Google Scholar
5.
Chiba, K., Przymusinski, T.C. and Rudin, M.E., Normality of products and Morita's conjectures, preprint.Google Scholar
8.
Filippov, V.V., On normally situated subspaces (Russian), Trundy Mat. Inst. Steklov AN SSSR
154 (1983), 239–251.Google Scholar
9.
Hoshina, T. and Morita, K., On rectangular products of topological spaces, Top. Appl. 11 (1980), 47–57.Google Scholar
10.
Morita, K., On the dimension of the product of topological spaces, Tsukuba J. Math. 1 (1977), 1—6.Google Scholar
11.
Ohta, H., On normal, non-rectangular products, Quart. J. Math. Oxford (2), 32 (1981), 339–344.Google Scholar
12.
Pasynkov, B.A., The dimension of products of normal spaces, Dokl. Akad. Nauk SSSR
209 (1973), 792-794 = Soviet Math. Dokl. 14 (1973), 530-533.Google Scholar
13.
Pasynkov, B.A., On the dimension of rectangular products, Dokl. Akad. Nauk SSSR
221 (1975), 291-294 = Soviet Math. Dokl. 16 (1975), 344–347.Google Scholar
14.
Pasynkov, B.A., Factorization theorems in dimension theory, Uspekhi Mat. Nauk
36 (1981), 147-175 = Russian Math. Surveys 36 (1981), 175-209.Google Scholar
15.
Pasynkov, B.A., On the monotonicity of dimension, Dokl. Akad. Nauk SSSR
267 (1982), 548-552 = Soviet Math. Dokl. 26 (1982), 654-658.Google Scholar
16.
Pasynkov, B.A., On dimension theory, in: James, I.M. and Kronheimer, E. (ed.) Aspects of Topology (In memory of Hugh Dowker 1912-1982), London Math. Soc. Lecture Note Ser. 93 (1985), 227–250.Google Scholar
17.
Przymusiński, T.C., On the dimension of product spaces and an example of M. Wage, Proc. Amer. Math. Soc. 76(1979), 315-321.Google Scholar
18.
Przymusiński, T.C., Product spaces, in: Reed, G.M. (ed.) Surveys in General Topology (Academic Press, New York) (1980), 399–429.Google Scholar
19.
Przymusiński, T.C., A solution to a problem ofE. Michael, Pacific J. Math. 114 (1984), 235-242.Google Scholar
20.
Steen, L.A. and Seebach, J.A., Jr., Counterexamples in topology 2nd. ed. (Springer-Verlag, New York, 1978).Google Scholar
21.
Tamano, K., A note on E. Michael's example and rectangular products, J. Math. Soc. Japan
34 (1982), 187–190.Google Scholar
22.
Terasawa, J., On the zero-dimensionality of some non-normal product spaces, Sci. Rep. Tokyo Kyoiku Daigaku
11 (1972), 95–102.Google Scholar
23.
Tsuda, K., Some examples concerning the dimension of product spaces, Math. Japonica
27 (1982), 177–195.Google Scholar
24.
Tsuda, K., An n-dimensional version of Wage's example, Colloq. Math. 49 (1984), 15—19.Google Scholar
25.
Wage, M., The dimension of product spaces, preprint 1976, Department of Mathematics, Yale University.Google Scholar
26.
Wage, M., The dimension of product spaces, Proc. Natl. Acad. Sci. U.S.A.
75 (1978), 4671–4672.Google Scholar
You have
Access