Published online by Cambridge University Press: 20 November 2018
The R1 axiom was first introduced by Davis in [1]. It is strictly weaker than the T2 axiom. Murdeshwar and Naimpally, in [4], have weakened the T2 hypothesis to R1 in some well-known theorems. We show that in many topological spaces the R1 axiom and regularity are equivalent. Also, the definition of local compactness given in [4] can be weakened to the usual definition and still get the same results.
The notion of a bitopological space was first introduced by Kelley in [3]. Fletcher, Hoyle, and Patty discuss pairwise compactness for bitopological spaces in [2]. One of our main results is that a bitopological space (X, P, Q) is pairwise compact if and only if each ultrafilter v on X, containing a proper P closed set and a proper Q closed set, has a common P and Q limit.