Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T06:17:10.403Z Has data issue: false hasContentIssue false

p-Radial Exceptional Sets and Conformal Mappings

Published online by Cambridge University Press:  20 November 2018

Piotr Kot*
Affiliation:
Politechnika Krakowska, Instytut Matematyki, ul. Warszawska 24, 31-155 Kraków, Poland e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For $p\,>\,0$ and for a given set $E$ of type ${{G}_{\delta }}$ in the boundary of the unit disc $\partial \mathbb{D}$ we construct a holomorphic function $f\,\in \,\mathbb{O}\left( \mathbb{D} \right)$ such that

$${{\int_{\mathbb{D}\backslash \left[ 0,\,1 \right]E}{\left| f \right|}}^{p}}\,d{{\mathfrak{L}}^{2}}\,<\,\infty \,\text{and}\,E\,=\,{{E}^{p}}\left( f \right)\,=\,\{\,z\,\in \,\partial \mathbb{D}\,:\,\int _{0}^{1}\,{{\left| f\left( tz \right) \right|}^{p}}\,dt\,=\,\infty \}.$$

In particular if a set $E$ has a measure equal to zero, then a function $f$ is constructed as integrable with power $p$ on the unit disc $\mathbb{D}$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2007

References

[1] Globevnik, J., Holomorphic functions which are highly nonintegrable at the boundary. Israel J. Math. 115(2000), 195203.Google Scholar
[2] Jakóbczak, P., The exceptional sets for functions from the Bergman space. J. Port. Math. 50(1993), no. 1, 115128.Google Scholar
[3] Jakóbczak, P., The exceptional sets for holomorphic functions in Hartogs domains. Complex Variables Theory Appl. 32(1997), no. 1, 8997.Google Scholar
[4] Jakóbczak, P., Highly nonintegrable functions in the unit ball. Israel J. Math 97(1997), 175181.Google Scholar
[5] Jakóbczak, P., Exceptional sets of slices for functions from the Bergman space in the ball. Canad. Math. Bull. 44(2001), no. 2, 150159.Google Scholar
[6] Kot, P., Description of simple exceptional sets in the unit ball. Czechoslovak Math. J. 54(129)(2004), no. 1, 5563.Google Scholar
[7] Kot, P., Maximum sets of semicontinuous functions. Potential Anal. 23(2005), no. 4, 323356.Google Scholar
[8] Kot, P., Exceptional sets in Hartogs domains. Canad. Math. Bull 48(2005), no. 4, 580586.Google Scholar
[9] Kot, P., Exceptional sets in convex domains. J. Convex Anal. 12(2005), no. 2, 351364.Google Scholar
[10] Pommerenke, C., Boundary Behavior of Conformal Maps. Grundlehren der Mathematischen Wissenschaften 299, Springer-Verlag, Berlin, 1992.Google Scholar