No CrossRef data available.
Published online by Cambridge University Press: 28 December 2020
Le nombre chromatique relatif
$c_0(S)$
d’une surface compacte S à bord est défini comme la borne supérieure des nombres chromatiques des graphes plongés dans S avec tous leurs sommets sur
$\partial S$
. Cet invariant topologique a été introduit pour l’étude de la multiplicité de la première valeur propre de Steklov sur S. Dans cet article, on montre que
$c_0(S)$
est aussi pertinent pour l’étude des plongements polyédraux tendus de S en établissant deux résultats. Le premier est que s’il existe un plongement polyédral tendu de S dans
$\mathbb {R}^n$
qui n’est pas contenu dans un hyperplan, alors
$n\leq c_0(S)-1$
. Le second est que cette inégalité est optimale pour les surfaces de petit genre.