No CrossRef data available.
Article contents
On the Uniqueness of Jordan Canonical Form Decompositions of Operators by K-theoretical Data
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper, we develop a generalized Jordan canonical form theorem for a certain class of operators in $L\left( H \right)$ . A complete criterion for similarity for this class of operators in terms of $K$ -theory for Banach algebras is given.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2016
References
[1]
Azoff, E. A., Borel measurability in linear algebra.
Proc. Amer. Math. Soc.
42(1974), 346–350. http://dx.doi.org/10.1090/S0002-9939-1974-0327799-1
Google Scholar
[2]
Azoff, E. A., Fong, C. K., and Gilfeather, F., A reduction theory for non-self-adjoint operator algebras.
Trans. Amer. Math. Soc.
224(1976), no. 2, 351–366. http://dx.doi.org/10.1090/S0002-9947-1976-0448109-1
Google Scholar
[3]
Blackadar, B., K-theoryfor operator algebras.Second éd.,Mathematical Sciences Research Institute Publications, 5, Cambridge University Press, Cambridge, 1998.Google Scholar
[4]
Conway, J. B., A course in functional analysis.
Second éd.,Graduate Texts in Mathematics, 96, Springer-Verlag, New York, 1990.Google Scholar
[5]
Davidson, K. R.,C*-algebras by example. Fields Institute Monographs, 6, American Mathematical Society, Providence, RI, 1996.Google Scholar
[6]
Deckard, D. and Pearcy, C., On continuous matrix-valued functions on a Stonian space.
Pacific J. Math.
14(1964), 857–869. http://dx.doi.org/10.2140/pjm.1964.14.857
Google Scholar
[7]
Dowson, H. R., Spectral theory of linear operators.London Mathematical Society Monographs, 12, Academic Press, Inc., London-New York, 1978.Google Scholar
[8]
Gilfeather, F., Strong reducibility of operators.
Indiana Univ. Math. J.
22(1972), 393–397. http://dx.doi.org/10.1512/iumj.1973.22.22032
Google Scholar
[9]
Halmos, P., Irreducible operators.Michigan Math. J. 15(1968), 215–223. http://dx.doi.org/10.1307/mmjV1028999975
Google Scholar
[10]
Jiang, C. and Shi, R., Direct integrals of strongly irreducible operators.J. Ramanujan Math. Soc. 26(2011), no.,2 165–180.Google Scholar
[11]
Jiang, C. and Wang, Z., Structure ofHilbert space operators.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.Google Scholar
[12]
Radjavi, H. and Rosenthal, P., Invariant subspaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 77, Springer-Verlag, New York-Heidelberg, 1973.Google Scholar
[13]
Rordam, M., E Larsen, and Laustsen, N., An introduction to K-theoryfor C*-algebras. London Mathematical Society Student Texts, 49, Cambridge University Press, Cambridge, 2000.Google Scholar
[15]
Shi, R., On a generalization of the Jordan canonical form theorem on separable Hilbert spaces.
Proc. Amer. Math. Soc.
140(2012), 1593–1604. http://dx.doi.org/10.1090/S0002-9939-2011-11513-2
Google Scholar
[16]
Hou, Y. and Ji, K., On the extended holomorphic curves on C*-algebras.
Oper. Matrices
8(2014), 999–1011. http://dx.doi.org/10.7153/oam-08-55
Google Scholar
[17]
Ji, K., On a generalization ofBi(Cl) on C*-algebras.
Proc. Indian Acad. Sci. Math. Sci.
124(2014), 243–253. http://dx.doi.org/!0.1007/s12044-014-0177-4
Google Scholar
You have
Access