Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T17:07:16.575Z Has data issue: false hasContentIssue false

On the Existence of the Graded Exponent for Finite Dimensional ℤp-graded Algebras

Published online by Cambridge University Press:  20 November 2018

Onofrio M. Di Vincenzo
Affiliation:
Dipartimento di Matematica e Informatica, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italiae-mail: [email protected]
Vincenzo Nardozza
Affiliation:
Dipartimento di Matematica, Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italiae-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $F$ be an algebraically closed field of characteristic zero, and let $A$ be an associative unitary $F$-algebra graded by a group of prime order. We prove that if $A$ is finite dimensional then the graded exponent of $A$ exists and is an integer.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[BD] Bahturin, Yu. P. and Drensky, V., Graded polynomial identities of matrices. Linear Algebra Appl. 357(2002), 1534. http://dx.doi.org/10.1016/S0024-3795(02)00356-7 Google Scholar
[Be] Berele, A., Cocharacter sequences for algebras with Hopf algebra actions. J. Algebra 185(1996), 869885. http://dx.doi.org/10.1006/jabr.1996.0354 Google Scholar
[BGP] Benanti, F., Giambruno, A. and Pipitone, M., Polynomial identities on superalgebras and exponential growth. J. Algebra 269(2003), 422438. http://dx.doi.org/10.1016/S0021-8693(03)00528-3 Google Scholar
[DV] Di Vincenzo, O. M., Cocharacters of G-graded algebras. Comm. Algebra 24(1996), 32933310. http://dx.doi.org/10.1080/00927879608825751 Google Scholar
[Fo] Formanek, E., A conjecture of Regev about the Capelli polynomial. J. Algebra 109(1987), 93114. http://dx.doi.org/10.1016/0021-8693(87)90166-9 Google Scholar
[GMZ] Giambruno, A., Mishchenko, S. and Zaicev, M., Codimensions of algebras and growth functions. Adv. Math. 217(2008), 10271052. http://dx.doi.org/10.1016/j.aim.2007.07.008 Google Scholar
[GR] Giambruno, A. and Regev, A., Wreath products and P.I. algebras. J. Pure Appl. Algebra 35(1985), 133149. http://dx.doi.org/10.1016/0022-4049(85)90036-2 Google Scholar
[GZ1] Giambruno, A. and Zaicev, M., On codimension growth of finitely generated associative algebras. Adv. Math. 140(1998), 145155. http://dx.doi.org/10.1006/aima.1998.1766 Google Scholar
[GZ2] Giambruno, A. and Zaicev, M., Exponential codimension growth of P.I. algebras: an exact estimate. Adv. Math. 142(1999), 221243. http://dx.doi.org/10.1006/aima.1998.1790 Google Scholar
[GZ3] Giambruno, A. and Zaicev, M., Involutions codimensions of finite dimensional algebras and exponential growth. J. Algebra 222(1999), 471484. http://dx.doi.org/10.1006/jabr.1999.8016 Google Scholar
[GRZ] Giambruno, A., Regev, A. and Zaicev, M., Simple and semisimple Lie algebras and codimension growth. Trans. Amer. Math. Soc. 352(2000), 19351946. http://dx.doi.org/10.1090/S0002-9947-99-02419-8 Google Scholar
[Ke] Kemer, A. R., Varieties an 2-graded algebras. Izv. Akad. Nauk SSSR Ser. Mat. 48(1984), 10421059.Google Scholar
[MZ] Mishchenko, S. and Zaicev, M., An example of a variety of Lie algebras with a fractional exponent. Algebra, 11. J. Math. Sci. (New York) 93(1999), 977982. http://dx.doi.org/10.1007/BF02366352 Google Scholar
[Pe] Petrogradsky, V., Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions. Sb. Math. 188(1997), 913931.Google Scholar
[Re1] Regev, A., Existence of identities in A B. Israel J. Math. 11(1972), 131152. http://dx.doi.org/10.1007/BF02762615 Google Scholar
[Re2] Regev, A., The Representations of Sn and Explicit Identities for P.I. Algebras. J. Algebra 51(1978), 2540. http://dx.doi.org/10.1016/0021-8693(78)90133-3 Google Scholar
[SVO] Ştefan, D. and Van Oystaeyen, F., The Wedderburn–Malcev theorem for comodule algebras. Comm. Algebra 27(1999), 35693581. http://dx.doi.org/10.1080/00927879908826648 Google Scholar
[St] Stanley, R. P., Enumerative Combinatorics. Vol. 1. Cambridge Studies in Advanced Mathematics 49, Cambridge, Cambridge University Press, 1997.Google Scholar
[Vo1] Volichenko, I. B., On the bases of a free Lie algebra modulo some T-ideals. Dokl. Akad. Nauk BSSR 24(1980), 400403.Google Scholar
[Vo2] Volichenko, I. B., Varieties of Lie algebras with the identity [x 1, x 2, x 3], [x 4, x 5, x 6] = 0 over a field of characteristic zero. (Russian) Sibirsk. Mat. Zh. 25(1984), 4054.Google Scholar
[Za] Zaicev, M., Integrality of exponents of growth of identities of finite-dimensional Lie algebras. Izv. Ross. Akad. Nauk Ser. Mat. 66(2002), 2348.Google Scholar