Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T00:08:50.344Z Has data issue: false hasContentIssue false

On the Distribution of the Direction and Collinearity Factors in Discriminant Analysis

Published online by Cambridge University Press:  20 November 2018

R. P. Gupta
Affiliation:
Dalhousie University, Halifax, N. S., Canada
R. D. Gupta
Affiliation:
Dalhousie University, Halifax, N. S., Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If the samples of sizes n1, n2,…, nq+1 are available from (q+1) normal populations with different mean vectors μα, α=l, 2,…, q+1 and the same covariance matrix ∑ and if x’=(x1, x2, …, xp) denotes the vector of p variates on which the measurements are made, then we obtain the following multivariate analysis of variance table.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Bartlett, M. S., The goodness of fit of a single hypothetical discriminant function in the case of several groups. Ann. Eugen. 16 (1951) 199-214.Google Scholar
2. Gupta, R. P. and Kabe, D. G., Distribution of certain factors in discriminant analysis. Ann. Inst. Statist. Math. 23 (1971) 97-103.Google Scholar
3. Radcliffe, J., The distribution of certain factors occurring in discriminant analysis. Proc. Camb. Phil. Soc. 64 (1968) 731-740.Google Scholar
4. Williams, , Some, E. J. exact tests in multivariate analysis. Biometrika. 39 (1952) 17-31.Google Scholar