Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T11:51:04.007Z Has data issue: false hasContentIssue false

On Suslinian Continua

Published online by Cambridge University Press:  20 November 2018

D. Daniel
Affiliation:
Lamar University, Department of Mathematics, Beaumont, TX 77710, U.S.A. e-mail: [email protected]
J. Nikiel
Affiliation:
American University of Beirut, Department of Mathematics, Beirut, Lebanon e-mail: [email protected]
L. B. Treybig
Affiliation:
Texas A&M University, Department of Mathematics, College Station, TX 77843, U.S.A. e-mail: [email protected]
H. M. Tuncali
Affiliation:
Nipissing University, Faculty of Arts and Sciences, North Bay, ON, P1B 8L7 e-mail: [email protected]
E. D. Tymchatyn
Affiliation:
University of Saskatchewan, Department of Mathematics, Saskatoon, SK, S7N 0W0 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A continuumis said to be Suslinian if it does not contain uncountably many mutually exclusive nondegenerate subcontinua. We prove that Suslinian continua are perfectly normal and rim-metrizable. Locally connected Suslinian continua have weight atmost ${{\omega }_{1}}$ and under appropriate set-theoretic conditions are metrizable. Non-separable locally connected Suslinian continua are rim-finite on some open set.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2005

References

[1] Daniel, D., Nikiel, J., Treybig, L. B., Tuncali, H. M. and Tymchatyn, E. D., On rim-properties of continua. Questions Answers Gen. Topology 19(2001), 187193.Google Scholar
[2] Daniel, D., Nikiel, J., Treybig, L. B., Tuncali, H. M. and Tymchatyn, E. D., Concerning continua that contain no metric subcontinua. preprint, 2002 (to appear in Houston J. Math.).Google Scholar
[3] Daniel, D., Nikiel, J., Treybig, L. B., Tuncali, H. M. and Tymchatyn, E. D., On perfectly normal compacta, preprint, 2002, Submitted for publication.Google Scholar
[4] Daniel, D. and Treybig, L. B., A decomposition theorem for locally connected Suslinian continua, Topology Proc. 23(1998), 93105.Google Scholar
[5] Engelking, R., General topology. Heldermann Verlag, Berlin, 1989.Google Scholar
[6] Fitzpatrick, B. Jr. and Lelek, A., Some local properties of Suslinian compacta. Colloq. Math. 31(1974), 189197.Google Scholar
[7] Lelek, A., On the topology of curves, II. Fund. Math. 70(1971), 131138.Google Scholar
[8] Mardešić, S., On covering dimension and inverse limits of compact spaces. Illinois J. Math. 4(1960), 278291.Google Scholar
[9] Mardešić, S., Locally connected, ordered and chainable continua. Rad Jugoslav. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Nauke 319(1961), 147166.Google Scholar
[10] Mardešić, S., Images of ordered compacta are locally peripherally metric. Pacific J. Math. 23(1967), 557568.Google Scholar
[11] Nikiel, J., The Hahn-Mazurkiewicz theorem for hereditarily locally connected continua. Topology Appl. 32(1989), 307323.Google Scholar
[12] Simone, J.N., Metric components of continuous image of ordered compacta. Pacific J. Math. 69(1977), 269274.Google Scholar
[13] Simone, J.N., Continuous images of ordered compacta and hereditarily locally connected continua. Coll. Math. 40(1978), 7784.Google Scholar
[14] Simone, J.N., Concerning hereditarily locally connected continua. Coll. Math. 39(1978), 243251.Google Scholar
[15] Todorčević, S., Trees and linearly ordered sets. In: Handbook of set-theoretic topology, (Kunen, K. and Vaughan, J.E., eds.), North-Holland, Amsterdam, 1984, pp. 235293.Google Scholar
[16] Treybig, L. B., Concerning continua which are continuous images of compact ordered spaces. Duke Math. J. 32(1965), 417422.Google Scholar
[17] Treybig, L. B., Arcwise connectivity in continuous images of ordered compacta. Glas. Mat. Ser. III 21(41)(1986), 201211.Google Scholar
[18] Tymchatyn, E. D., The Hahn-Mazurkiewicz theorem for finitely Suslinian continua. General Topology Appl. 7(1977), 1123–127.Google Scholar
[19] van Mill, J. and Wattel, E., Souslin dendrons. Proc. Amer. Math. Soc. 72(1978), 545555.Google Scholar