J ⊆ H with Chain Condition
Published online by Cambridge University Press: 20 November 2018
The purpose of this paper is to point out that the arguments of [2] with slight modification extend the main result of [2] to the case of H satisfying either ACC or DCC on quadratic ideals and they extend [6, Theorem 2] to R being semiprime. Thus we obtain
Theorem 1. Let R be a semiprime associative ring with involution ✶ and J a closed ample quadratic Jordan subring of H(R) satisfying either ACC or DCC on quadratic ideals. Then R is Goldie. In this case, J has a Jordan ring of quotients J′ which is a closed ample quadratic Jordan subring of H(R′) where R′ is the associative ring of quotients of R.
Prepared while the author was at the 1974 SRI at the University of Calgary and held NRC Grant A-8471. Revised while the author was at the 1975 SRI at Dalhousie University.