Published online by Cambridge University Press: 20 November 2018
Let A be an m × n matrix of complex numbers. Let Aτ and A* denote the transpose and conjugate transpose, respectively, of A. We say A is diagonal if A contains only zeros in all positions (i, j) with i ≠ j. In a recently published paper [4], M.H. Pearl established the following fact: There exist real orthogonal matrices O1 and O2 (O1 m-square, O2 n-square) such that O1AO2 is diagonal, if and only if both AA* and A*A are real. It is the purpose of this paper to show that a theorem substantially stronger than this result of Pearl's is included in the real case of a theorem of N.A. Wiegmann [2]. (For other papers related to Wiegmann's, see [l; 3].)
The preparation of this paper was supported in part by the Office of Scientific Research of the U.S. Air Force, under Grant 698-67.