Article contents
On Linear Independence of a Certain Multivariate Infinite Product
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $q$,
$m$,
$M\,\ge \,2$ be positive integers and
${{r}_{1}},\,{{r}_{2}},...,\,{{r}_{m}}$
be positive rationals and consider the following
$M$ multivariate infinite products
$${{F}_{i}}\,=\,\prod\limits_{j=0}^{\infty }{(1\,+\,{{q}^{-(Mj+i)}}\,{{r}_{1}}\,+\,{{q}^{-2(Mj+i)}}\,{{r}_{2}}\,+\,\cdot \cdot \cdot +\,{{q}^{-m(Mj+i)}}\,{{r}_{m}})}$$
for $i\,=\,0,\,1,\,.\,.\,.\,,\,M\,-\,1$. In this article, we study the linear independence of these infinite products. In particular, we obtain a lower bound for the dimension of the vector space
$\mathbb{Q}{{F}_{0}}\,+\,\mathbb{Q}{{F}_{1}}\,+\cdot \cdot \cdot +\,\mathbb{Q}{{F}_{M-1}}\,+\,\mathbb{Q}$
over ℚ and show that among these
$M$ infinite products,
${{F}_{0}}\,+\,{{F}_{1}},...,\,{{F}_{M-1}}$
, at least
$\sim \,M/m\left( m+1 \right)$ of them are irrational for fixed
$m$ and
$M\,\to \,\infty $.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2008
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20190730040955258-0505:S0008439500010006:S0008439500010006_inline01.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20190730040955258-0505:S0008439500010006:S0008439500010006_inline02.gif?pub-status=live)
- 1
- Cited by