Published online by Cambridge University Press: 20 November 2018
Let A be the matrix algebra of type n × n over a finite algebraic number field F, and V the module of matrices of type n × m over F. V is naturally an A-left module. Given a non-singular symmetric matrix S of type m × m over F, we have a bilinear mapping f of V on A such that f(x, y) = xSy' for elements x and y in V where y' is the transpose of y. In this case, corresponding to the arithmetic of A([l]), the arithmetical theory of V will be discussed to some extent as we establish the arithmetic of quadratic forms over algebraic number fields ([2]). In this note, we shall define a lattice in V with respect to a maximal order in A. and determine its structure (Theorem 1), and after giving a structure of a complement of a lattice (Theorem 2), we shall give a finiteness theorem of class numbers of lattices under some assumption (Theorem 3).