Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T00:57:16.088Z Has data issue: false hasContentIssue false

On intersections of polynomial semigroups orbits with plane lines

Published online by Cambridge University Press:  17 July 2020

Jorge Mello*
Affiliation:
University of New South Wales, School of Mathematics and Statistics, UNSW Sydney, NSW2052, Australia

Abstract

We study intersections of orbits in polynomial semigroup dynamics with lines on the affine plane over a number field, extending previous work of D. Ghioca, T. Tucker, and M. Zieve (2008).

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author’s work was supported by the ARC Discovery Grant DP180100201 and UNSW.

References

Bell, J. P., Ghioca, D., and Tucker, T. J., The dynamical Mordell-Lang problem for Noetherian spaces . Funct. Approx. Comment. Math. 53(2015), no. 2, 313328. http://dx.doi.org/10.7169/facm/2015.53.2.7 CrossRefGoogle Scholar
Bell, J. P., Ghioca, D., and Tucker, T. J., The dynamical Mordell-Lang conjecture . Mathematical surveys and monographs, 210, Amer. Math. Soc., Providence, RI, 2016.Google Scholar
Benedetto, R., Ghioca, D., Kurlberg, P., and Tucker, T., A gap principle for dynamics . Compos. Math. 146(2010), no. 4, 10561072. http://dx.doi.org/10.1112/S0010437X09004667 CrossRefGoogle Scholar
Benedetto, R., Ghioca, D., Kurlberg, P., and Tucker, T., A case of the dynamical Mordell-Lang conjecture . Math. Ann. 352(2012), 126. http://dx.doi.org/10.1007/s00208-010-0621-4 CrossRefGoogle Scholar
Bilu, Y. and Tichy, R., The diophantine equation $f(x)=g(y)$ . Acta Arith. 95(2000), 261288. http://dx.doi.org/10.4064/aa-95-3-261-288 CrossRefGoogle Scholar
D’Andrea, C., Ostafe, A., Shparlinski, I. E., and Sombra, M., Reductions modulo primes of systems of polynomial equations and algebraic dynamical systems . Trans. Am. Math. Soc. 371(2019), 11691198. http://dx.doi.org/10.1090/tran/7437 CrossRefGoogle Scholar
Ghioca, D. and Nguyen, K. D., The orbit intersection problem for linear spaces and semiabelian varieties . Math. Res. Lett. 24(2017), no. 5, 12631283. http://dx.doi.org/10.4310/MRL.2017.v24.n5.a2 CrossRefGoogle Scholar
Ghioca, D., Tucker, T., and Zieve, M., Intersections of polynomial orbits, and a dynamical Mordell–Lang conjecture . Invent. Math. 171(2008), 463483. http://dx.doi.org/10.1007/s00222-007-0087-5 CrossRefGoogle Scholar
Ghioca, D., Tucker, T., and Zieve, M., The Mordell-Lang question for endomorphisms of semiabelian varieties . J. Théor. Nombres Bordeaux 23(2011), no. 3, 645666. http://dx.doi.org/10.5802/jtnb.781 CrossRefGoogle Scholar
Ghioca, D., Tucker, T., and Zieve, M., Linear relations between polynomial orbits . Duke Math. J. 161(2012), 13791410. http://dx.doi.org/10.1215/00127094-1598098 CrossRefGoogle Scholar
Kawaguchi, S., Canonical heights, invariant currents, and dynamical systems of morphisms associated with line bundles . J. Reine Angew. Math. 597(2006), 135173. http://dx.doi.org/10.1515/CRELLE.2006.065 Google Scholar
Kawaguchi, S., Canonical heights for random iterations in certain varieties . Int. Math. Res. Not. (2007), rnm 023. http://dx.doi.org/10.1093/imrn/rnm023 Google Scholar
Ostafe, A. and Sha, M., On the quantitative dynamical Mordell–Lang conjecture . J. Number Theory 156(2015), 161182. http://dx.doi.org/10.1016/j.jnt.2015.04.011 CrossRefGoogle Scholar
Ostafe, A. and Shparlinski, I. E., Orbits of algebraic dynamical systems in subgroups and subfields . In: Number theory—Diophantine problems, uniform distribution and applications, Springer, Cham, 2017, pp. 347368.CrossRefGoogle Scholar
Wang, M. X., A dynamical Mordell-Lang property on the disk . Trans. Am. Math. Soc. 369(2017), no. 3, 21832204. http://dx.doi.org/10.1090/tran/6775 CrossRefGoogle Scholar