Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T09:14:15.581Z Has data issue: false hasContentIssue false

On Flat and Gorenstein Flat Dimensions of Local Cohomology Modules

Published online by Cambridge University Press:  20 November 2018

Majid Rahro Zargar
Affiliation:
Department of Advanced Technologies, University of Mohaghegh ardabili, Namin, Ardabil, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran e-mail: [email protected]
Hossein Zakeri
Affiliation:
Faculty ofMathematical Sciences and Computer, Kharazmi University, 599 Taleghani Ave., Tehran 15608, Iran e-mail: [email protected] e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\mathfrak{a}$ be an ideal of a Noetherian local ring $R$ and let $C$ be a semidualizing $R$-module. For an $R$-module $X$, we denote any of the quantities $\text{f}{{\text{d}}_{R}}X,\,\text{Gf}{{\text{d}}_{R}}X$ and ${{\text{G}}_{\text{C}}}-\text{f}{{\text{d}}_{R}}\,X\,\text{by}\,\text{T}\left( X \right)$. Let $M$ be an $R$-module such that $\text{H}_{\mathfrak{a}}^{i}\left( M \right)\,=\,0$ for all $i\,\ne \,n$. It is proved that if $T\left( M \right)\,<\,\infty$, then $\text{T}\left( \text{H}_{\mathfrak{a}}^{n}\left( M \right) \right)\,\le \,\text{T}\left( M \right)\,+\,n$, and the equality holds whenever $M$ is finitely generated. With the aid of these results, among other things, we characterize Cohen–Macaulay modules, dualizing modules, and Gorenstein rings.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Auslander, M., Modules over unramified regular local rings. Illinois J. Math. 5(1961), 631647.Google Scholar
[2] Avramov, L. L. and Foxby, H.-B., Ring homomorphismsand finite Gorensteindimension. Proc. London Math. Soc. (3) 75(1997), no. 2, 241270. http://dx.doi.org/10.1112/S0024611597000348 Google Scholar
[3] Brodmann, M. P. and Sharp, R. Y., Local cohomology: An algebraic introduction with geometric applications.CambridgeStudies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998. http://dx.doi.org/10.1017/CBO9780511629204 Google Scholar
[4] Bruns, W. and Herzog, J., Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.Google Scholar
[5] Christensen, L. W., Gorenstein dimensions. Lecture Notes in Mathematics, 1747, Springer-Verlag, Berlin, 2000. http://dx.doi.org/10.1007/BFb0103980 Google Scholar
[6] Christensen, L. W., H-B.Foxby, and Holm, H., Beyond totally reflexive modules and back. In: Commutative algebra-Noetherian and non-Noetherian perspectives, Springer, New York, 2011, pp. 101143. http://dx.doi.org/10.1007/978-1-4419-6990-3_5 Google Scholar
[7] Christensen, L. W., Frankild, A., and Holm, H., On Gorenstein protective, injective and flat dimensions-a functorial description with applications. J. Algebra. 302(2006), no. 1, 231279. http://dx.doi.org/10.1016/j.jalgebra.2OO5.12.007 Google Scholar
[8] Divaani-Aazar, K., Naghipour, R., and Tousi, M., Cohomological dimension of certain algebraic varieties. Proc. Amer. Math. Soc. 130(2002), no. 12, 35373544. http://dx.doi.org/10.1090/S0002-9939-02-06500-0 Google Scholar
[9] Enochs, E. E., Jenda, O. M. G., and Jinzhong Xu, Foxby duality and Gorenstein injective and projective modules. Trans. Amer. Math. Soc. 348(1996), no. 8, 32233234. http://dx.doi.org/10.1090/S0002-9947-96-01624-8 Google Scholar
[10] Enochs, E. E. and Jenda, O. M. G., Relative homological algebra, de Gruyter Expositions in Mathematics, 30, Walter de Gruyter, Berlin, 2000.http://dx.doi.org/10.1515/9783110803662 Google Scholar
[11] Esmkhani, M. A. and Tousi, M., Gorenstein homological dimensions and Auslander categories.J. Algebra 308(2007), no. 1, 321329. http://dx.doi.org/10.1016/j.jalgebra.2006.08.030 Google Scholar
[12] Gruson, L. and Raynaud, M., Critères de platitude et de projectivité. Techniques de “platification“ d'un module. Invent. Math. 13(1971), 189. http://dx.doi.org/10.1007/BF01390094 Google Scholar
[13] Hellus, M. and Schenzel, P., Oncohomologicallycomplete intersections. J. Algebra 320(2008), no. 10, 37333748. http://dx.doi.org/10.1016/j.jalgebra.2008.09.006 Google Scholar
[14] Holm, H. and Jorgensen, P., Semidualizing modules and related Gorensteinhomological dimension. J. Pure Appl. Algebra 205(2006), no. 2, 423445. http://dx.doi.org/10.1016/j.jpaa.2005.07.010 Google Scholar
[15] Jensen, C. U., On the vanishing o/lim(i). J. Algebra 15(1970), 151166.Google Scholar
[16] Rahro Zargar, M., Local cohomology modules and Gorenstein injectivity with respect to a semidualizing module,Arch. Math. (Basel) 100 (2013) 2534.http://dx.doi.org/10.1007/s00013-012-0459-y Google Scholar
[17] RahroZargar, M. and Zakeri, H., On injective and Gorenstein injective dimensions of local cohomology modules. Algebra Colloq. 22(2015), Special Issue no. 1, 935946. http://dx.doi.org/10.1142/S1005386715000784 Google Scholar
[18] Rotman, J. J., An introduction to homologicalalgebra.Second éd., Universitext, Springer, New York, 2009. http://dx.doi.org/10.1007/b98977 Google Scholar
[19] Sather-Wagstaff, S., Semidualizing modules. http://people.clemson.edu/-ssather/DOCS/Nashville2 004.pdfGoogle Scholar
[20] Sather-Wagstaff, S. and Yassemi, S., Modules of finite homological dimension with respect to a semidualizing module. Arch. Math. (Basel) 93(2009), no. 2,111-121. http://dx.doi.org/10.1007/s00013-009-0020-9 Google Scholar
[21] Sazeedeh, R., Gorenstein injective of the section functor.Forum Math. 22(2010), no. 6,1117-1127. http://dx.doi.org/10.1515/FORUM.2010.059 Google Scholar
[22] Takahashi, R. and White, D., Homological aspects of semidualizing modules.Math. Scand. 106(2010), no. 1, 522.Google Scholar
[23] W. V. Vasconcelos, , Divisor theory in module categories. North-Holland Mathematics Studies, 14, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1974.Google Scholar