Published online by Cambridge University Press: 20 November 2018
In [10], it is defined that a right (or left) ideal I of a ring R is very large if the cardinality of R/I is finite. It is also proven in [10, Theorem 3.4] that if R is a prime ring with 1 such that its characteristic is zero, then R is a right order in a simple ring with the minimum condition on one sided ideals if every large right ideal of R is very large. In the present note, we shall prove that if R is a prime ring with 1 such that its characteristic is zero and R is also a compact topological ring, then R is a right and left order in a simple ring with the minimum condition on one sided ideals, which is also a non-discrete locally compact topological ring if and only if every large right ideal of R is open. In particular, if R is an integral domain with 1 (not necessarily commutative) such that its characteristic is zero, then R is openly embeddable [13, p. 58] in a locally compact (topological) division ring if and only if every large right ideal of R is open. Following S. Warner [13], we shall say R is openly embeddable in a quotient ring Q(R) if there is a topology on Q(R) which is compatible with its structure, which induces on R its given topology and for which R is an open subset.