Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T20:35:50.460Z Has data issue: false hasContentIssue false

On a Problem of P. Turán

Published online by Cambridge University Press:  20 November 2018

P. O. H. Vértesi*
Affiliation:
Department of Mathematics, University of Alberta, Edmonton, Alberta, CanadaT6G 2G1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let us consider the well-known Hermite-Fejér interpolating process on the interval [—1,1] i.e. let

(1.1)

(sometimes we omit the second indices),

(1.2)

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1975

References

1. Fejér, L., Die Abschätzung eines Polynômes, Math. Zeitschrift, 32 (1930), 426-457.Google Scholar
2. Turán, P., Aremark on Hermite-Fejér interpolation, Annales Univ. Sci. Bud. de Roi. Eötvös Nom., (Sectio Math.) 34 (1960/61), 369-377.Google Scholar
3. Vértesi, P. O. H., On the convergence of Hermite-Fejér interpolation, Acta Math. Acad. Sci. Hung, 22 (1971), 151-158.Google Scholar
4. Faber, G., Uber die interpolatorische Darstellung stetiger Funktionen, Jahresbericht der Deutsch. Math. Ver., (1914), 192-210.Google Scholar
5. Vértesi, P. O. H., Lower estimations for some interpolating processes, Studia Sci. Math. Hung. 5 (1971), 401-410.Google Scholar
6. Szegö, G., Orthogonal polynomials, Amer. Math. Soc. Coll. Publ. XXIII (New York, 1959).Google Scholar