Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T23:32:22.333Z Has data issue: false hasContentIssue false

On A Problem of P. Turán on Lacunary Interpolation*

Published online by Cambridge University Press:  20 November 2018

A. K. Varma*
Affiliation:
University of Alberta, Edmonton
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1955, Suranyi and P. Turán [8] considered the problem of existence and uniqueness of interpolatory polynomials of degree ≤ 2n-1 when their values and second derivatives are prescribed on n given nodes. Around this kind of interpolation - aptly termed (0, 2) interpolation - considerable literature has grown up since then. For more complete bibliography on this subject we refer to J. Balazs [3], Later we considered [10] the problem of modified (0, 2) interpolation when 2 the abscissas are the zeros of (1-x2) Tn(x), where Tn(x) is the Tchebycheff polynomial of the first kind (Tn(x) = cos n θ, x = cos θ).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1967

Footnotes

**

I take this opportunity to express my thanks to Professor P. Turán (Budapest) and to Professor A. Sharma (Edmonton) for helpful suggestions as the paper progressed.

*

The author acknowledges financial support from Post Doctoral Fellowship Department of Mathematics, University of Alberta (1966) and from N.R.C. Grant M.C.A.-26(1964).

References

1. Bal, J.ázs and Turán, P., Notes on interpolation II. Acta Math. Acad. Sci. Hung. vol. 8 (1955), 201-215.Google Scholar
2. Bal, J.ázs and Turán, P., Notes on interpolation III. Acta Math. Acad. Sci. Hung. vol. 9 (1955), 195-214.Google Scholar
3. Balázs, J., Suryozott (0,2) - interplacioultra szferikus polyinomok Gyökein. A magyar Tudományos Akademic (Hungarian), 305-338 (1966).Google Scholar
4. Dzyadyk, V. K., Constructive characterization of functions satisfying the conditions Lip α(0 < α<1) on a finite segment of the realaxis. Izv. Akad. Nauk. SSSR. Ser. Mat. 20 (1955) 623-642.Google Scholar
5. Freud, G., Bemerkung über die KonvergenzeinesInterpolationfahrens von P. Turán. Acta Math. Acad. Sci. Hung. 9 (1955), 337-341.Google Scholar
6. Natanson, I. P., Constructive Theory of functions, English Translation. United States Atomic Energy Commission (1966).Google Scholar
7. Polya, G., Bemerkungzur interpolation und zur' Naherunge thorie der Balkenbiegung Zeitschr, fur Angelo Math, und Mech., 11 (1933), 445-449.Google Scholar
8. Suranyi, J. and Turán, P., Notes on interpolation I. on some interpolatory properties of ultraspherical polynomials. Acta. Math. Sci. Hung. 6 (1955), 67-79.Google Scholar
9. Szegö, G., Orthogonal polynomials. A. M. S. Coll. Pub. vol. 23 (1955).Google Scholar
10. Varma, A. K. and Sharma, A., Some interpolatoryproperties of Tchebycheff polynomials (0, 2) case modified. Publ Math. Debrencen., Hung. (1966), 336-349.Google Scholar