Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T18:07:33.975Z Has data issue: false hasContentIssue false

On a New Exponential Sum

Published online by Cambridge University Press:  20 November 2018

Daniel Lieman
Affiliation:
Department of Mathematics University of Missouri Columbia, Missouri 65211 USA, email: [email protected]
Igor Shparlinski
Affiliation:
Department of Computing Macquarie University NSW 2109 Australia, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $p$ be prime and let $\vartheta \,\in \,\mathbb{Z}_{p}^{*}$ be of multiplicative order $t$ modulo $p$. We consider exponential sums of the form

$$S\left( a \right)\,=\,\sum\limits_{x=1}^{t}{\exp \left( 2\pi ia{{\vartheta }^{{{x}^{2}}}}\,/\,p \right)}$$

and prove that for any $\varepsilon \,>\,0$

$$\underset{\gcd (a,\,p)\,=\,1}{\mathop{\max }}\,\,\left| S\left( a \right) \right|\,=\,O\left( {{t}^{5/6+\varepsilon }}\,{{p}^{1/8}} \right)$$

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2001

References

[1] Canetti, R., Friedlander, J. B., Konyagin, S., Larsen, M., Lieman, D. and Shparlinski, I. E., On the statistical properties of the Diffie-Hellman distribution. Israel J. Math., (to appear).Google Scholar
[2] Friedlander, J. B., Lieman, D. and Shparlinski, I. E., On the distribution of the RSA generator. Proc. Intern. Conf. on Sequences and their Applications (SETA ‘98), Singapore, (eds. C. Ding, T. Helleseth and H. Niederreiter), Springer-Verlag, London, 1999, 205212.Google Scholar
[3] Friedlander, J. B. and Shparlinski, I. E., On the distribution of the Power generator. Math. Comp., to appear.Google Scholar
[4] Konyagin, S. and Shparlinski, I. E., Character sums with exponential functions and their applications. Cambridge Univ. Press, Cambridge, 1999.Google Scholar
[5] Korobov, N. M., On the distribution of digits in periodic fractions. Math. USSR-Sb. 18 (1972), 659676.Google Scholar
[6] Korobov, N. M., Exponential sums and their applications. Kluwer Acad. Publ., Dordrecht, 1992.Google Scholar
[7] Niederreiter, H., Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer.Math. Soc. 84 (1978), 9571041.Google Scholar
[8] Niederreiter, H., Random number generation and Quasi-Monte Carlo methods. SIAM Press, 1992.Google Scholar
[9] Prachar, K., Primzahlverteilung. Springer-Verlag, Berlin, 1957.Google Scholar