Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:18:22.810Z Has data issue: false hasContentIssue false

A Note on the Exactness of Operator Spaces

Published online by Cambridge University Press:  20 November 2018

Z. Dong*
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou 310027, P.R. China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we give two characterizations of the exactness of operator spaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Blecher, D., Tensor products of operator spaces. II. Canad. J. Math. 44(1992), 7590.Google Scholar
[2] Blecher, D. and Paulsen, V., Tensor products of operator spaces. J. Funct. Anal. 99(1991), no. 2, 262292. doi:10.1016/0022-1236(91)90042-4Google Scholar
[3] Effros, E. G. and Ruan, Z.-J., On non-selfadjoint operator algebras. Proc. Amer. Math. Soc. 110(1990), no. 4, 915922. doi:10.2307/2047737Google Scholar
[4] Effros, E. G. and Ruan, Z.-J., Mapping spaces and liftings for operator spaces. Proc. London Math. Soc. 69(1994), no. 1, 171197. doi:10.1112/plms/s3-69.1.171Google Scholar
[5] Effros, E. G. and Ruan, Z.-J., Operator Spaces. London Mathematical Society Monographs 23. The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
[6] Effros, E. G., Junge, M., and Ruan, Z.-J., Integral mapping and the principle of local reflexivity for non-commutative L1 spaces. Ann. of Math. 151(2000), no. 1, 5992. doi:10.2307/121112Google Scholar
[7] Effros, E. G., Ozawa, N. and Ruan, Z.-J., On injectivity and nuclearity for operator spaces. Duke Math. J. 110(2001), no. 3, 489521. doi:10.1215/S0012-7094-01-11032-6Google Scholar
[8] Kadison, R. V. and Ringrose, J. R., Fundamentals of the Theory of Operator Algebras. I. Elementary Theory. Graduate Studies in Mathematics 15. American Mathematical Society, Providence, RI, 1997.Google Scholar
[9] Kirchberg, E., The Fubini theorem for exact C*-algebras. J. Operator Theory 10(1983), no. 1, 38.Google Scholar
[10] Paulsen, V., Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics 78. Cambridge University Press, Cambridge, 2002.Google Scholar
[11] Pisier, G., Exact operator spaces. Recent advances in operator algebras. Astérisque 232(1995), 159186.Google Scholar
[12] Pisier, G., Introduction to Operator Space Theory. London Mathematical Society Lecture Notes Series 294. Cambridge University Press, Cambridge, 2003.Google Scholar
[13] Ruan, Z.-J., Subspaces of C*-algebras. J. Funct. Anal. 76(1988), no. 1, 217230.Google Scholar