We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper, we give two characterizations of the exactness of operator spaces.
[1] Blecher, D., Tensor products of operator spaces. II. Canad. J. Math.44(1992), 75–90.Google Scholar
2
[2] Blecher, D. and Paulsen, V., Tensor products of operator spaces. J. Funct. Anal.99(1991), no. 2, 262–292. doi:10.1016/0022-1236(91)90042-4Google Scholar
3
[3] Effros, E. G. and Ruan, Z.-J., On non-selfadjoint operator algebras. Proc. Amer. Math. Soc.110(1990), no. 4, 915–922. doi:10.2307/2047737Google Scholar
4
[4] Effros, E. G. and Ruan, Z.-J., Mapping spaces and liftings for operator spaces. Proc. London Math. Soc.69(1994), no. 1, 171–197. doi:10.1112/plms/s3-69.1.171Google Scholar
5
[5] Effros, E. G. and Ruan, Z.-J., Operator Spaces. London Mathematical Society Monographs 23. The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
6
[6] Effros, E. G., Junge, M., and Ruan, Z.-J., Integral mapping and the principle of local reflexivity for non-commutative L1 spaces. Ann. of Math.151(2000), no. 1, 59–92. doi:10.2307/121112Google Scholar
7
[7] Effros, E. G., Ozawa, N. and Ruan, Z.-J., On injectivity and nuclearity for operator spaces. Duke Math. J.110(2001), no. 3, 489–521. doi:10.1215/S0012-7094-01-11032-6Google Scholar
8
[8] Kadison, R. V. and Ringrose, J. R., Fundamentals of the Theory of Operator Algebras. I. Elementary Theory. Graduate Studies in Mathematics 15. American Mathematical Society, Providence, RI, 1997.Google Scholar
9
[9] Kirchberg, E., The Fubini theorem for exact C*-algebras. J. Operator Theory10(1983), no. 1, 3–8.Google Scholar
10
[10] Paulsen, V., Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics 78. Cambridge University Press, Cambridge, 2002.Google Scholar
[12] Pisier, G., Introduction to Operator Space Theory. London Mathematical Society Lecture Notes Series 294. Cambridge University Press, Cambridge, 2003.Google Scholar
13
[13] Ruan, Z.-J., Subspaces of C*-algebras. J. Funct. Anal.76(1988), no. 1, 217–230.Google Scholar