No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $M$ be a compact, connected, orientable 3-manifold whose boundary is a torus and whose interior admits a complete hyperbolic metric of finite volume. In this paper we show that if theminimal Culler-Shalen norm of a non-zero class in ${{H}_{1}}(\partial M)$ is larger than 8, then the finite surgery conjecture holds for $M$. This means that there are at most 5 Dehn fillings of $M$ which can yieldmanifolds having cyclic or finite fundamental groups and the distance between any slopes yielding such manifolds is at most 3.